a) Viết phương trình chính tắc của elip (E) đi qua điểm \(A\left(0;2\right)\) và có một tiêu điểm là \(F_1\left(-\sqrt{5};0\right)\)
b) Tìm độ dài trục lớn, trục nhỉ, tiêu cự và tỉ số \(\dfrac{c}{a}\) của elip (E)
c) Tìm diện tích của hình chữ nhât cơ sở của (E)
a, Phương trình chính tắc của (E) có dạng
\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\) với 0<b<a
Ta có A(0;2) \(\in\left(E\right)\)<=>b=2
(E) có tiêu điểm F1\(\left(-\sqrt{5};0\right)\) => c=\(\sqrt{5}\)
Ta có \(a^2=b^2+c^2=4+5=9\)=>a=3
==> (E) \(\dfrac{x^2}{9}+\dfrac{y^2}{4}=1\)
b, 2a = 6; 2b = 4; 2c = \(2\sqrt{5}\)=>\(\dfrac{c}{a}=\dfrac{\sqrt{5}}{3}\)
c, S=4ab=24