cho 3 số tự nhiên a,b,c là độ dài 3 cạnh của 1 tâm giác.chứng minh nếu a+b là 1 ước lẻ của a(b-c)2+b(a-c)2 thì a+b là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(p+q=1\Rightarrow q=1-p\)
BĐT cần c/m trở thành:
\(pa^2+\left(1-p\right)b^2-p\left(1-p\right)c^2>0\)
\(\Leftrightarrow p^2c^2+\left(a^2-b^2-c^2\right)p+b^2>0\) (1)
\(\Delta=\left(a^2-b^2-c^2\right)^2-4b^2c^2=\left(a^2-b^2-c^2+2bc\right)\left(a^2-b^2-c^2-2bc\right)\)
\(=\left(a^2-\left(b-c\right)^2\right)\left(a^2-\left(b+c\right)^2\right)\)
\(=\left(a+c-b\right)\left(a+b-c\right)\left(a-b-c\right)\left(a+b+c\right)< 0\) theo BĐT tam giác
\(\Rightarrow\) (1) luôn đúng
mình vẫn chưa học đến delta nên bạn có thể giải rõ ra được không ?
Dễ thấy : \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Rightarrow a+b\le\sqrt{2\left(a^2+b^2\right)}\)
Tương tự : \(b+c\le\sqrt{2\left(b^2+c^2\right)}\), \(c+a\le\sqrt{2\left(c^2+a^2\right)}\)
=> \(2\left(a+b+c\right)\le\sqrt{2}\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\)
\(\Leftrightarrow\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)
Lời giải:
$a(b-c)^2+b(a-c)^2\vdots a+b$
$\Leftrightarrow a(b^2-2bc+c^2)+b(a^2-2ac+c^2)\vdots a+b$
$\Leftrightarrow ab(a+b)-4abc+c^2(a+b)\vdots a+b$
$\Leftrightarrow 4abc\vdots a+b$
Giả sử $a+b$ là số nguyên tố lẻ. Đặt $a+b=p$
Khi đó;
$4abc\vdots p\Leftrightarrow abc\vdots p$
$\Rightarrow a\vdots p$ hoặc $b\vdots p$ hoặc $c\vdots p$
Nếu $a\vdots p\Leftrightarrow a\vdots a+b$ (vô lý với mọi $a>0$)
Nếu $b\vdots p$ thì tương tự (vô lý)
Nếu $c\vdots p\Leftrightarrow c\vdots a+b$. Mà $c>0$ nên $c\geq a+b$
$\Leftrightarrow a+b-c\leq 0$ (vi phạm bđt tam giác)
Do đó điều giả sử sai. Tức $a+b$ là hợp số.