K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2017

a) \(\overrightarrow{BA}\left(4;2\right);\overrightarrow{BC}\left(3;-1\right)\).
\(\dfrac{4}{3}\ne\dfrac{2}{-1}\) nên hai véc tơ \(\overrightarrow{BA};\overrightarrow{BC}\) không cùng phương hay 3 điểm A, B, C không thẳng hàng.
b) \(cos\widehat{ABC}=cos\left(\overrightarrow{BA};\overrightarrow{BC}\right)=\dfrac{4.3+2.\left(-1\right)}{\sqrt{4^2+2^2}.\sqrt{3^2+\left(-1\right)^2}}\)\(=\dfrac{\sqrt{2}}{2}\).
Suy ra: \(\widehat{ABC}=45^o\).

AH
Akai Haruma
Giáo viên
16 tháng 11 2018

Lời giải:

Gọi phương trình đường thẳng $AB$ là $y=ax+b$

Khi đó: \(\left\{\begin{matrix} 4=2a+b\\ -1=-3a+b\end{matrix}\right.\Rightarrow 5a=5\Rightarrow a=1\Rightarrow b=2\)

Vậy ptđt $AB$ có dạng $y=x+2$

Lại thấy: \(1\neq (-2)+2\) nên $C$ không thể thuộc đường thẳng $AB$

Suy ra $A,B,C$ không thẳng hàng. Bạn xem lại đề.

16 tháng 11 2018

Gọi \(A\left(x_1;y_1\right);B\left(x_2;y_2\right);C\left(x_3;y_3\right)\)

Độ dài AB: \(AB=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}\)

\(=\sqrt{\left(2-\left(-3\right)\right)^2+\left(4-\left(-1\right)^2\right)}\) \(=5\sqrt{2}\) (đvđd)

Độ dài BC: \(BC=\sqrt{\left(\left(-3\right)-\left(-2\right)\right)^2+\left[\left(-1\right)-1\right]^2}\)

\(=\sqrt{\left(-1\right)^2+\left(-2\right)^2}\) \(=\sqrt{1+4}=\sqrt{5}\)(đvđd)

\(AC=\sqrt{\left(2-\left(-2\right)\right)^2+\left(4-1\right)^2}=5\)(đvđd)

\(\Rightarrow AB+BC\ne AC\)\(\Rightarrow A,B,C\) không thẳng hàng

(1) trong mặt phẳng tọa độ Oxy, cho hai vecto \(\overrightarrow{a}=\left(1;-4\right)\), \(\overrightarrow{b}=\left(0;2\right)\). tọa độ của vecto \(\overrightarrow{u}=2\overrightarrow{a}-\overrightarrow{b}\) là?(2) trong mặt phẳng tọa độ Oxy, cho hai vecto \(\overrightarrow{a}=\left(-7;3\right)\), \(\overrightarrow{b}=\left(4;1\right)\). tọa độ của vecto \(\overrightarrow{u}=\overrightarrow{b}-2\overrightarrow{a}\) là?(3) trong mặt phẳng tọa độ Oxy, cho hai...
Đọc tiếp

(1) trong mặt phẳng tọa độ Oxy, cho hai vecto \(\overrightarrow{a}=\left(1;-4\right)\)\(\overrightarrow{b}=\left(0;2\right)\). tọa độ của vecto \(\overrightarrow{u}=2\overrightarrow{a}-\overrightarrow{b}\) là?

(2) trong mặt phẳng tọa độ Oxy, cho hai vecto \(\overrightarrow{a}=\left(-7;3\right)\)\(\overrightarrow{b}=\left(4;1\right)\)tọa độ của vecto \(\overrightarrow{u}=\overrightarrow{b}-2\overrightarrow{a}\) là?

(3) trong mặt phẳng tọa độ Oxy, cho hai vecto \(\overrightarrow{u}=\left(-5;4\right)\)\(\overrightarrow{v}=-3\overrightarrow{j}\). tọa độ của vecto \(\overrightarrow{a}=2\overrightarrow{u}-5\overrightarrow{v}\) là?

(4) trong mặt phẳng tọa độ Oxy, cho hai điểm A (1;1), B (4;-7) và \(\overrightarrow{OM}=2\overrightarrow{OA}-5\overrightarrow{OB}\). tổng hoành độ và tung độ của điểm M là?

giúp mk vs ạ mk cần gấp thank

1

(1); vecto u=2*vecto a-vecto b

=>\(\left\{{}\begin{matrix}x=2\cdot1-0=2\\y=2\cdot\left(-4\right)-2=-10\end{matrix}\right.\)

(2): vecto u=-2*vecto a+vecto b

=>\(\left\{{}\begin{matrix}x=-2\cdot\left(-7\right)+4=18\\y=-2\cdot3+1=-5\end{matrix}\right.\)

(3): vecto a=2*vecto u-5*vecto v

\(\Leftrightarrow\left\{{}\begin{matrix}a=2\cdot\left(-5\right)-5\cdot0=-10\\b=2\cdot4-5\cdot\left(-3\right)=15+8=23\end{matrix}\right.\)

(4): vecto OM=(x;y)

2 vecto OA-5 vecto OB=(-18;37)

=>x=-18; y=37

=>x+y=19

NV
25 tháng 8 2020

Do M nằm trên đoạn AB nên \(\overrightarrow{AM}=-3\overrightarrow{BM}\)

Gọi \(M\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(x-2;y-1\right)\\\overrightarrow{BM}=\left(x-6;y-5\right)\end{matrix}\right.\)

\(\overrightarrow{AM}=-3\overrightarrow{BM}\Leftrightarrow\left\{{}\begin{matrix}x-2=-3\left(x-6\right)\\y-1=-3\left(y-5\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\x=4\end{matrix}\right.\) \(\Rightarrow M=\left(5;4\right)\)

17 tháng 5 2017

\(\overrightarrow{AB}\left(-3;2\right)\); \(\overrightarrow{AC}\left(1;m-2\right)\).
Ba điểm A, B, C thẳng hàng khi và chỉ khi:
\(\dfrac{1}{-3}=\dfrac{m-2}{2}\Leftrightarrow-3\left(m-2\right)=2\)\(\Leftrightarrow m=\dfrac{4}{3}\).