cho hàm số y= x^2 + 2mx+ 2m-1. tìm m để p cắt trục ox tại 2 điểm phân biệt sao cho tổng bình phương hai hoành độ bằng 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
PT hoành độ giao điểm:
$x^2-2mx-(2m+1)=0(*)$
Để (P) và (d) cắt nhau tại 2 điểm pb có hoành độ $x_1,x_2$ thì PT $(*)$ phải có 2 nghiệm pb $x_1,x_2$
$\Leftrightarrow \Delta'=m^2+2m+1>0\Leftrightarrow (m+1)^2>0$
$\Leftrightarrow m\neq -1$
Áp dụng định lý Viet: $x_1+x_2=2m; x_1x_2=-(2m+1)$
Khi đó:
$\sqrt{x_1+x_2}+\sqrt{3+x_1x_2}=2m+1$
$\Leftrightarrow \sqrt{2m}+\sqrt{3-2m-1}=2m+1$
\(\Leftrightarrow \left\{\begin{matrix}
0\leq m< 1\\
\sqrt{2m}+\sqrt{2(1-m)}=2m+1\end{matrix}\right.\)
Bình phương 2 vế dễ dàng giải ra $m=\frac{1}{2}$ (thỏa)
Lời giải:
PT hoành độ giao điểm:
$x^2-2mx+2m-1=0(*)$
Để $(p)$ và $(d)$ cắt nhau tại 2 điểm phân biệt thì pt $(*)$ có 2 nghiệm phân biệt
$\Leftrightarrow \Delta'=m^2-(2m-1)>0\Leftrightarrow (m-1)^2>0\Leftrightarrow m\neq 1$
Áp dụng định lý Viet:
$x_1+x_2=2m$
$x_1x_2=2m-1$
$(P)$ và $(d)$ cắt nhau tại 2 điểm nằm khác phía trục tung
$\Leftrightarrow x_1x_2<0$
$\Leftrightarrow 2m-1<0\Leftrightarrow m< \frac{1}{2}$
Khoảng cách từ 2 giao điểm đến trục hoành là:
$|y_1|+|y_2|=|x_1^2|+|x_2^2|=5$
$\Leftrightarrow x_1^2+x_2^2=5$
$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=5$
$\Leftrightarrow (2m)^2-2(2m-1)=5$
$\Leftrightarrow 4m^2-4m-3=0$
$m=\frac{-1}{2}$ hoặc $m=\frac{3}{2}$
Vì $m\neq 1$ và $m< \frac{1}{2}$ nên $m=\frac{-1}{2}$
Đáp án B
y = 0 ⇔ x 2 = 1 x 2 = 2 m + 1 . có 4 nghiệm phân biệt khi
2 m + 1 > 0 ; 2 m + 1 ≠ 1 ⇔ m > − 1 ; m ≠ 0 .
Khi đó 4 nghiệm là − 2 m + 1 ; − 1 ; 1 ; 2 m + 1
4 nghiệm lập thành cấp số cộng có trường hợp sau sắp xếp theo thứ tự sau
TH1: − 1 ; − 2 m + 1 ; 2 m + 1 ; 1 ⇒ khoảng cách giữa chúng là bằng nhau ⇔ 1 − 2 m + 1 = 2 2 m + 1 ⇔ 3 2 m + 1 = 1 ⇔ m = − 4 9 .
TH2: − 2 m + 1 ; − 1 ; 1 ; 2 m + 1 ⇒ khoảng cách giữa chung là bằng nhau
⇔ 2 m + 1 − 1 = 2 ⇔ m = 4
Câu 2:
Thay x=0 và y=-3 vào (d), ta được:
m+2=-3
hay m=-5
1, Do hàm số trên cắt trục hoành tại điểm có hoành độ bằng 3 hay hàm số trên đi qua A(3;0)
<=> \(0=6+b\Leftrightarrow b=-6\)
2, Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-\left(m-1\right)x-m+4=0\)
Để (P) cắt (d) tại 2 điểm pb nằm về 2 phía trục tung khi pt có 2 nghiệm trái dấu hay
\(x_1x_2=-m+4< 0\Leftrightarrow-m< -4\Leftrightarrow m>4\)
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
tick mk nha mình học rồi........dễ lắm!