Tính giá trị của biểu thức :
a) \(2\sin30^0+3\cos45^0-\sin60^0\)
b) \(2\cos30^0+3\sin45^0-\cos60^0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính giá trị của biểu thức :
a) \(2\sin30^0+3\cos45^0-\sin60^0\)
b) \(2\cos30^0+3\sin45^0-\cos60^0\)
c) \(cotg44^0.cotg45^0.cotg46^0=cotg45^0=1\)
(vì \(cotg44^0=tg46^0\) (do \(44^0+46^0=90^0\) )
mà \(tg46^0.cot46^0=1\) )
Vì 300 và 600 là hai góc phụ nhau nên sin 30 0 = cos 60 0 sin 60 0 = cos 30 0
⇒ P = cos 30 ∘ cos 60 ∘ − sin 30 ∘ sin 60 ∘ = cos 30 ∘ cos 60 ∘ − cos 60 ∘ cos 30 ∘ = 0.
Chọn D.
Vì 300 và 600 là hai góc phụ nhau nên sin 30 0 = cos 60 0 sin 60 0 = cos 30 0
⇒ P = sin 30 ∘ cos 60 ∘ + sin 60 ∘ cos 30 ∘ = cos 2 60 ∘ + sin 2 60 ∘ = 1.
Chọn A.
Vì 300 và 600 là hai góc phụ nhau nên sin 30 0 = cos 60 0 sin 60 0 = cos 30 0
⇒ P = cos 30 ∘ cos 60 ∘ − sin 30 ∘ sin 60 ∘ = cos 30 ∘ cos 60 ∘ − cos 60 ∘ cos 30 ∘ = 0.
Chọn D.
Chú ý 2 điều: \(\cos45^o=\sin45^o=\frac{\sqrt{2}}{2}\) và \(\cos^2a+\sin^2a=1\)
Do đó:
a) \(A=\cos^252^o.\frac{\sqrt{2}}{2}+\sin^252^o.\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}\left(\cos^252^o+\sin^252^o\right)=\frac{\sqrt{2}}{2}.1=\frac{\sqrt{2}}{2}\)
b) \(B=\frac{\sqrt{2}}{2}.\cos^247^o+\frac{\sqrt{2}}{2}.\sin^247^o=\frac{\sqrt{2}}{2}\left(\cos^247^o+\sin^247^o\right)=\frac{\sqrt{2}}{2}.1=\frac{\sqrt{2}}{2}\)
a/\(sina-1=2sin\dfrac{a}{2}.cos\dfrac{a}{2}-sin^2\dfrac{a}{2}-cos^2\dfrac{a}{2}=-\left(sin\dfrac{a}{2}-cos\dfrac{a}{2}\right)^2\)
b/\(P=\dfrac{cosa+cos5a+2cos3a}{sina+sin5a+2sin3a}=\dfrac{2cos3a.cos2a+2cos3a}{2sin3a.cos2a+2sin3a}=\dfrac{2cos3a\left(cos2a+1\right)}{2sin3a\left(cos2a+1\right)}=cot3a\)
c/\(P=sin\left(30+60\right)=sin90=1\)
d/
\(A=cos\dfrac{2\pi}{7}+cos\dfrac{6\pi}{7}+cos\dfrac{4\pi}{7}\Rightarrow A.sin\dfrac{\pi}{7}=sin\dfrac{\pi}{7}.cos\dfrac{2\pi}{7}+sin\dfrac{\pi}{7}cos\dfrac{4\pi}{7}+sin\dfrac{\pi}{7}.cos\dfrac{6\pi}{7}\)
\(=\dfrac{1}{2}sin\dfrac{3\pi}{7}-\dfrac{1}{2}sin\dfrac{\pi}{7}+\dfrac{1}{2}sin\dfrac{5\pi}{7}-\dfrac{1}{2}sin\dfrac{3\pi}{7}+\dfrac{1}{2}sin\dfrac{7\pi}{7}-\dfrac{1}{2}sin\dfrac{5\pi}{7}\)
\(=-\dfrac{1}{2}sin\dfrac{\pi}{7}\Rightarrow A=-\dfrac{1}{2}\)
e/
\(tan\dfrac{\pi}{24}+tan\dfrac{7\pi}{24}=\dfrac{sin\dfrac{\pi}{24}}{cos\dfrac{\pi}{24}}+\dfrac{sin\dfrac{7\pi}{24}}{cos\dfrac{7\pi}{24}}=\dfrac{sin\dfrac{\pi}{24}cos\dfrac{7\pi}{24}+sin\dfrac{7\pi}{24}cos\dfrac{\pi}{24}}{cos\dfrac{\pi}{24}.cos\dfrac{7\pi}{24}}\)
\(=\dfrac{sin\left(\dfrac{\pi}{24}+\dfrac{7\pi}{24}\right)}{\dfrac{1}{2}cos\dfrac{\pi}{4}+\dfrac{1}{2}cos\dfrac{\pi}{3}}=\dfrac{2sin\dfrac{\pi}{3}}{cos\dfrac{\pi}{4}+cos\dfrac{\pi}{3}}=\dfrac{\sqrt{3}}{\dfrac{\sqrt{2}}{2}+\dfrac{1}{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}+1}\)
a)
\(A=cos^230^o-sin^230^o=\left(\dfrac{\sqrt{3}}{2}\right)^2-\left(\dfrac{1}{2}\right)^2=\dfrac{1}{2}\);
\(B=cos60^o+sin45^o=\dfrac{1}{2}+\dfrac{\sqrt{2}}{2}\).
Vì vậy \(A< B\).
b)
\(C=\dfrac{2tan30^o}{1-tan^230^o}=\dfrac{2\dfrac{\sqrt{3}}{2}}{1-\left(\dfrac{\sqrt{3}}{2}\right)^2}=\sqrt{3}\).
\(D=\left(-tan135^o\right)tan60^o=-\left(-1\right).\sqrt{3}=\sqrt{3}\).
Vậy \(C=D\).
\(A=\frac{\sqrt{2}}{2}cos^252+\frac{\sqrt{2}}{2}sin^252=\frac{\sqrt{2}}{2}\left(sin^252+cos^252\right)=\frac{\sqrt{2}}{2}\)
\(B=\sqrt{3}.cos^247+\sqrt{3}.sin^247=\sqrt{3}\left(sin^247+cos^247\right)=\sqrt{3}\)
a)
\(2sin30+3sin45^o-sin60^o=2.\dfrac{1}{2}+3.\dfrac{\sqrt{2}}{2}-\dfrac{\sqrt{3}}{2}\)\(=\dfrac{2+3\sqrt{2}-\sqrt{3}}{2}\).
b)\(2cos30^o+3sin45^o-cos60^o=2.\dfrac{\sqrt{3}}{2}+3.\dfrac{\sqrt{2}}{2}-\dfrac{1}{2}\)\(=\dfrac{2\sqrt{3}+3\sqrt{2}-1}{2}\).