Cho tam giác ABC có trung tuyến AM. Trên cạnh AC lấy hai điểm E và F sao cho AE = EF = FC; BE cắt AM tại N. Chứng minh \(\overrightarrow{NA}\) và \(\overrightarrow{NM}\) là hai vectơ đối nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nối M với E.
Có MF là đường trung bình tam giác BEC nên MF//BE.
Xét tam giác AMC có E là trung điểm của AF, MF//BE nên BE đi qua trung điểm của AM hay N là trung điểm của AM.
\(\overrightarrow{AE}+\overrightarrow{AF}+\overrightarrow{AN}+\overrightarrow{MN}=\left(\overrightarrow{AF}+\overrightarrow{FC}\right)+\left(\overrightarrow{AN}+\overrightarrow{MN}\right)\)
\(=\overrightarrow{AC}+\overrightarrow{0}=\overrightarrow{AC}.\)
-Qua E,F kẻ các đường thẳng song song với BC cắt AM lần lượt tại P,Q.
-Xét △PIF có: PF//EQ (gt).
\(\Rightarrow\dfrac{EQ}{PF}=\dfrac{IE}{IF}\) (hệ quả định lí Ta-let).
-Xét △ABM có: EQ//BM (gt).
\(\Rightarrow\dfrac{EQ}{BM}=\dfrac{AE}{AB}\) (hệ quả định lí Ta-let). (1)
-Xét △ACM có: PF//CM (gt).
\(\Rightarrow\dfrac{PF}{CM}=\dfrac{AF}{AC}\) (hệ quả định lí Ta-let).
Mà \(BM=CM\) (M là trung điểm BC), \(AE=AF\) (gt)
\(\Rightarrow\dfrac{PF}{BM}=\dfrac{AE}{AC}\) (2)
-Từ (1), (2) suy ra:
\(\dfrac{\dfrac{EQ}{BM}}{\dfrac{PF}{BM}}\)=\(\dfrac{\dfrac{AE}{AB}}{\dfrac{AE}{AC}}\)
\(\Rightarrow\) \(\dfrac{EQ}{PF}=\dfrac{AC}{AB}\) mà \(\dfrac{EQ}{PF}=\dfrac{IE}{IF}\left(cmt\right)\)
Nên \(\dfrac{IE}{IF}=\dfrac{AC}{AB}\)
Kẻ đoạn thẳng MF.
Do AE = EF nên E là trung điểm AF.
Trong tam giác ABC có AM là đường trung tuyến nên M là trung điểm của BC.
Vì vậy: MF là đường trung bình của tam giác BEC.
Suy ra: MF//BE.
Trong tam giác AMF có E là trung điểm của AF, BE//MF nên BE đi qua trung điểm của AM hay N là trung điểm của AM.
Vì vậy \(\overrightarrow{NA}\) và \(\overrightarrow{NM}\) là hai véc tơ đối nhau.