cho A=\(999993^{1999}-555557^{1997}\)chứng tỏ chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, 2x+3y chia hết cho 17
=> 13.(2x+3y) chia hết cho 17 hay 26x+39y chia hết cho 17
Mà 17x và 34y đều chia hết cho 17 => 26x+39y-17x-34y chia hết cho 17 hay 9x+5y chia hết cho 17
=> ĐPCM
k mk nha
b) Ta có : 2x+3y chia hết cho 17
=> 9(2x+3y) chia hết cho 17
=> 18x+27y chia hết cho 17
Giả sử điều cần chứng minh là đúng thì 9x+5y chia hết cho 17
=> 2(9x+5y) chia hết cho 17
18x+10y chia hết cho 17
=> (18x+27y)-(18x+10y) = 17y chia hết cho 17
Mà 18x+27y chia hết cho 17 nên 18x+10y cũng chia hết cho 17
<=> 9x+5y chia hết cho 17
\(A=99999^{1999}-555557^{1997}\)
\(A=999993^3.999993^{1996}-555557.555557^{1996}\)
\(A=999993^3.\left(999993^4\right)^{499}-555557.\left(555557^4\right)^{499}\)
\(A=\left(.....7\right).\left(.....1\right)^{499}-555557.\left(.....1\right)^{499}\)
\(A=\left(.....7\right).\left(.....1\right)-555557.\left(....1\right)\)
\(A=\left(.....7\right)-\left(.....7\right)\)
\(A=\left(.....0\right)\)
Vậy chữ số tận cùng của A là 0
tìm các chữ số tận cùng của hai số trên ta có :
A=...3-...3=...0 Vì A có tận cùng là 0 =>A chia hết cho 5 (đpcm)
Ta có: \(A=999993^{1999}-555557^{1997}\)
\(=999993^{1998}.999993-555557^{1996}.555557\)
\(=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557\)
\(=\left(...9\right)^{999}.999993-\left(...9\right)^{998}.555557\)
\(=\left(...9\right).999993-\left(...1\right).555557\)
\(=\left(...7\right)-\left(...7\right)\)\(=\left(...0\right)\)
Chữ số tận cùng của \(A=999993^{1999}-555557^{1997}\) là \(0\).
\(\Rightarrow\)\(A=999993^{1999}-555557^{1997}⋮5\)
Cho \(A=999993^{1999}-555557^{1997}\)
Vì \(^{1999}\) có dạng \(4n+3\) nên \(999993^{1999}=\overline{...7}\)
Vì \(^{1997}\) có dạng \(4n+1\) nên \(555557^{1997}=\overline{...7}\)
Ta có: \(\overline{...7}-\overline{...7}=\overline{...0}\)
\(\overline{...0}⋮5\) \(\Rightarrow\) \(A⋮5\)
Để A chia hết cho5 ta xét chữ số tận cùng của A bằng việc xét chữ số tận cùng của mỗi số.
Ta có :
\(3^{1999}=\left(3^4\right)^{499}\times3^3=81^{499}\times27=......7\)
\(7^{1997}=\left(7^4\right)^{499}\times7=2041^{499}\times7=....7\)
Vậy A có chữ số tận cùng là 0 nên A chia hết cho 5
Để A chia hết cho 5 thì A phải có chữ số tận cùng là 0 hoặc 5
Ta có: (1) 9999931999=(9999934)499. 9999933
Vì 9999934 có tận cùng là 1 suy ra (9999934)499 có tận cùng là 1
9999933 có tận cùng là 7 suy ra (9999934)499. 9999933 có tận cùng là 7 ( ta nhân 2 chữ số tận cùng lại với nhau 1.7=7)
(2) 5555571997= (5555574)499 .7
Ta có 5555574 có tận cùng là 1 suy ra (5555574)499 có tận cùng là 1 nên (5555574)499.7 có tận cùng là 7
Vậy chữ số tận cùng của A là 7-7=0. Từ đây ta kết luận A chia hết cho 5
bạn vào link này nè,mk lười viết nhắm:
https://olm.vn/hoi-dap/94533.html
\(A=\left(..3\right)^{1999}-\left(...5^{1997}\right)=\left(...3^4\right)^{499}.3^3-\left(...7^4\right)^{499}.7\)
\(A=\left(...1\right)^{499}.\left(...7\right)-\left(...1\right)^{499}.7\)
\(A=\left(...1\right).7-\left(...1\right).7=\left(...7\right)-\left(...7\right)=\left(...0\right)\)
\(\Rightarrow A⋮5\)