K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2021

Ta có: 202245-202244=202244.(202245-44-1)=202244.(2022-1)=202244.2021

202244-202243=202243.(202244-43-1)=202243.(2022-1)=202243.2021

Vì 202244.2021>202243.2021 nên 202245-202244>202244-202243

\(2022^{45}-2022^{44}=2022^{44}\cdot2021\)

\(2022^{44}-2022^{43}=2022^{43}\cdot2021\)

mà 44>43

nên \(2022^{45}-2022^{44}>2022^{44}-2022^{43}\)

9 tháng 5 2022

\(2022A=2022+2022^2+2022^3+2022^4+...+2022^{2018}\)

\(2021A=2022A-A=2022^{2018}-1\Rightarrow A=\dfrac{2022^{2018}-1}{2021}\)

\(\Rightarrow A< B\)

3 tháng 5 2018

2020+2022/2022+2024 lớn hơn

3 tháng 5 2018

lm sao hở c ?

4 tháng 7 2023

Trước hết ta phải chứng minh \(\dfrac{a}{b}< \dfrac{a+1}{b+1}\) (a, b ϵ N; a < b).

Thật vậy, \(\dfrac{a}{b}=\dfrac{a\left(b+1\right)}{b\left(b+1\right)}=\dfrac{a+ab}{b^2+b}\) và \(\dfrac{a+1}{b+1}=\dfrac{\left(a+1\right)b}{\left(b+1\right)b}=\dfrac{ab+b}{b^2+b}\).

Mà theo giả thuyết là a < b nên \(\dfrac{a+ab}{b^2+b}< \dfrac{ab+b}{b^2+b}\), suy ra \(\dfrac{a}{b}< \dfrac{a+1}{b+1}\) (a, b ϵ N; a < b).

Từ đây ta có:

\(B=\dfrac{2022^{2022}+1}{2022^{2023}+1}=\dfrac{2022^{2023}+2022}{2022^{2024}+2022}=\dfrac{2022^{2023}+2021+1}{2022^{2024}+2021+1}\)

Đặt \(A_1=\dfrac{2022^{2023}+2}{2022^{2024}+2}=\dfrac{2022^{2023}+1+1}{2022^{2024}+1+1}\), rõ ràng \(A_1>A\).

Đặt \(A_2=\dfrac{2022^{2023}+3}{2022^{2024}+3}=\dfrac{2022^{2023}+2+1}{2022^{2024}+2+1}\), rõ ràng \(A_2>A_1\).

...

Đặt \(A_{2020}=\dfrac{2022^{2023}+2021}{2022^{2024}+2021}=\dfrac{2022^{2023}+2020+1}{2022^{2024}+2020+1}\), rõ ràng \(A_{2020}>A_{2019}\) và \(B>A_{2020}\).

Suy ra \(B>A_{2020}>A_{2019}>...>A_2>A_1>A\). Vậy A < B.

4 tháng 7 2023

Ta có A = \(\dfrac{2022^{2023}}{2022^{2024}}=\dfrac{1}{2022}\) ; B = \(\dfrac{2022^{2022}}{2022^{2023}}=\dfrac{1}{2022}\)

Mà \(\dfrac{1}{2022}=\dfrac{1}{2022}\)

Vậy A = B

\(\dfrac{1}{2022}\cdot A=\dfrac{2022^{100}+1}{2022^{100}+100}=1-\dfrac{99}{2022^{100}+100}\)

\(\dfrac{1}{2022}B=\dfrac{2022^{101}+1}{2022^{101}+100}=1-\dfrac{9}{2022^{101}+100}\)

2022^100+100<2022^101+100

=>-99/2022^100+100<-99/2022^101+100

=>A<B

13 tháng 3 2023

=> A/2022 = 2022^100+1/2022^100+2022 = 1- 2021/2022^100+2022

=> B/2022 = 2022^101+1/2022^101+2022 = 1- 2021/2022^101+2022

Nhận thấy 2022^101 + 2022 > 2022^100 + 2022

=> 2021/2022^101 + 2022 < 2021/2022^100 + 2022

=> B/2022 > A/2022 => B>A

Vậy A<B

26 tháng 4 2022
Miug
2 tháng 5 2022

sửa rồi đó ạ