K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:\(B=\dfrac{1}{6}+\dfrac{1}{24}+\dfrac{1}{60}+...+\dfrac{1}{990}\)

\(2B=\dfrac{2}{6}+\dfrac{2}{24}+\dfrac{2}{60}+...+\dfrac{2}{990}\)

\(2B=\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+\dfrac{2}{3\cdot4\cdot5}+...+\dfrac{2}{9\cdot10\cdot11}\)

\(2B=\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+\dfrac{1}{3\cdot4}-\dfrac{1}{4\cdot5}+...+\dfrac{1}{9\cdot10}-\dfrac{1}{10\cdot11}\)

\(2B=\dfrac{1}{1\cdot2}-\dfrac{1}{10\cdot11}\)

\(2B=\dfrac{27}{55}\)

\(B=\dfrac{27}{55}:2\)

\(B=\dfrac{27}{110}\)

\(2.B=\dfrac{2}{6}+\dfrac{2}{14}+\dfrac{2}{60}+...+\dfrac{2}{990}\)

\(2B=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{9.10.11}\)

\(2B=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{9.10}-\dfrac{1}{10.11}\)

\(2B=\dfrac{1}{1.2}-\dfrac{1}{10.11}\)

\(B=\dfrac{27}{110}\)

10 tháng 5 2017

a, \(1\dfrac{13}{15}.\left(0,5\right)^2.3+\left(\dfrac{8}{15}-1\dfrac{19}{60}\right):1\dfrac{23}{24}\)

= \(\dfrac{28}{15}.\dfrac{25}{100}.3+\left(\dfrac{8}{15}-\dfrac{79}{60}\right):\dfrac{47}{24}\)

= \(\dfrac{28}{15}.\dfrac{1}{4}.3+\left(\dfrac{32-79}{60}\right).\dfrac{24}{47}\)

= \(\dfrac{84}{60}+\dfrac{-47}{60}.\dfrac{24}{47}\)

= \(\dfrac{84}{60}+\dfrac{-24}{60}=\dfrac{60}{60}=1\)

b, \(\dfrac{\left(\dfrac{11^2}{200}+0,415\right):0,01}{\dfrac{1}{12}-37,25+3\dfrac{1}{6}}\)

= \(\dfrac{\left(\dfrac{121}{200}+\dfrac{415}{1000}\right):\dfrac{1}{100}}{\dfrac{1}{12}-\dfrac{3725}{100}+\dfrac{19}{6}}=\dfrac{\left(\dfrac{121}{200}+\dfrac{83}{200}\right).100}{\dfrac{1}{12}-\dfrac{149}{4}+\dfrac{19}{6}}\)

= \(\dfrac{\dfrac{51}{50}.100}{-34}=\dfrac{102}{-34}=-3\)

12 tháng 6 2018

Chứng minh rằng 1 - 1/2 + 1/3 - ... - 1/1990 = 1/996 + 1/997 + ... + 1/990,Toán học Lớp 6,bài tập Toán học Lớp 6,giải bài tập Toán học Lớp 6,Toán học,Lớp 6

đó bạn

8 tháng 6 2021

\(1\dfrac{13}{15}\cdot\left(0,5\right)^2+3\cdot\left(\dfrac{8}{15}+1\dfrac{19}{60}\right):1\dfrac{23}{24}\)

\(=\dfrac{28}{15}\cdot\dfrac{1}{4}+3\cdot\left(\dfrac{8}{15}+\dfrac{79}{60}\right):\dfrac{47}{24}\)

\(=\dfrac{7}{15}+3\cdot\dfrac{37}{20}\cdot\dfrac{24}{47}\)

\(=\dfrac{7}{15}+\dfrac{666}{235}=\dfrac{2327}{705}\)

\(1\dfrac{13}{15}.\left(0,5\right)^2+3.\left(\dfrac{8}{15}+1\dfrac{19}{60}\right):1\dfrac{23}{24}\) 

\(=\dfrac{28}{15}.\dfrac{1}{4}+3.\left(\dfrac{8}{15}+\dfrac{79}{60}\right):\dfrac{47}{24}\) 

\(=\dfrac{7}{15}+3.\dfrac{37}{20}:\dfrac{47}{24}\) 

\(=\dfrac{7}{15}+\dfrac{666}{235}\) 

\(=\dfrac{2327}{705}\)

7 tháng 5 2021

A= 1/3+1/6+1/12+1/24+1/48+1/96

  = (1/3+1/6)+(1/12+1/24)+(1/48+1/96)

  = (2/6+1/6)+(2/24+1/24)+(2/96+1/96)

  = 1/2+1/8+1/32

  = 16/32+4/32+1/32
  = 21/32

Vậy A=21/32

Giải:

A=1/3+1/6+1/12+1/24+1/48+1/96

A=1/3+(1/2.3+1/3.4)+(1/4.6+1/6.8)+1/96

A=1/3+(1/2-1/3+1/3-1/4)+[1/2.(2/4.6+2/6.8)]+1/96

A=1/3+(1/2-1/4)+[1/2.(1/4-1/6+1/6-1/8)]+1/96

A=1/3+1/4+[1/2.(1/4-1/8)]+1/96

A=1/3+1/4+[1/2.1/8]+1/96

A=1/3+1/4+1/16+1/96

A=7/12+7/96

A=21/32

24 tháng 4 2017

\(B=\dfrac{1}{18}+\dfrac{1}{54}+...+\dfrac{1}{990}\)

\(\Rightarrow B=\dfrac{1}{3.6}+\dfrac{1}{6.9}+...+\dfrac{1}{30.33}\)

\(\Rightarrow B=\dfrac{1}{3}\left(\dfrac{3}{3.6}+\dfrac{3}{6.9}+...+\dfrac{3}{30.33}\right)\)

\(\Rightarrow B=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+...+\dfrac{1}{30}-\dfrac{1}{33}\right)\)

\(\Rightarrow B=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{33}\right)\)

\(\Rightarrow B=\dfrac{1}{3}.\dfrac{10}{33}\)

\(\Rightarrow B=\dfrac{10}{99}\)

Vậy...

24 tháng 4 2017

\(B=\dfrac{1}{18}+\dfrac{1}{54}+\dfrac{1}{108}+...+\dfrac{1}{990}\)

\(\Leftrightarrow B=\dfrac{1}{3.6}+\dfrac{1}{6.9}+\dfrac{1}{9.12}+..+\dfrac{1}{30.33}\)

\(\Leftrightarrow B=\left(\dfrac{1}{3}-\dfrac{1}{6}\right)+\left(\dfrac{1}{6}-\dfrac{1}{9}\right)+...+\left(\dfrac{1}{30}-\dfrac{1}{33}\right)\)

\(\Leftrightarrow B=\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+\dfrac{1}{9}-...+\dfrac{1}{30}-\dfrac{1}{33}\)

\(\Leftrightarrow B=\dfrac{1}{3}-\dfrac{1}{33}\)

\(\Leftrightarrow B=\dfrac{10}{33}\).