K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

Giải:

Ta có: \(\dfrac{2012a+b+c+d}{a}=\dfrac{a+2012b+c+d}{b}=\dfrac{a+b+2012c+d}{c}\)

\(=\dfrac{a+b+c+2012d}{d}\)

\(\Rightarrow\dfrac{2012a+b+c+d}{a}-2011=\dfrac{a+2012b+c+d}{b}-2011\)

\(=\dfrac{a+b+2012c+d}{c}-2011=\dfrac{a+b+c+2012d}{d}-2011\)

\(\Rightarrow\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)

+) Xét \(a+b+c+d=0\) ta có:

\(\left\{{}\begin{matrix}a+b=-\left(c+d\right)\\b+c=-\left(a+d\right)\\c+d=-\left(a+b\right)\\d+a=-\left(b+c\right)\end{matrix}\right.\)

\(M=\dfrac{a+b}{c+d}=\dfrac{b+c}{d+a}=\dfrac{c+d}{a+b}=\dfrac{d+a}{b+c}\)

\(\Rightarrow M=\dfrac{-\left(c+d\right)}{c+d}=\dfrac{-\left(a+d\right)}{a+d}=\dfrac{-\left(a+b\right)}{a+b}=\dfrac{-\left(b+c\right)}{b+c}=-1\)

+) Xét \(a+b+c+d\ne0\)

\(\Rightarrow a=b=c=d\)

\(M=\dfrac{a+b}{c+d}=\dfrac{b+c}{d+a}=\dfrac{c+d}{a+b}=\dfrac{d+a}{b+c}\)

\(\Rightarrow M=\dfrac{2a}{2a}=\dfrac{2a}{2a}=\dfrac{2a}{2a}=\dfrac{2a}{2a}=1\)

Vậy nếu \(a+b+c+d=0\) thì M = -1

nếu \(a+b+c+d\ne0\) thì M = 1

6 tháng 4 2017

tks bạn nhìu nha NGUYỄN HUY TÚ

6 tháng 4 2017

có dãy tỉ số bằng nhau đó thì ta cộng vào rồi rút gọn thì được kết quả là \(\dfrac{2015}{2011}\) nó sẽ bằng với từng biểu thức đó.

Mẫu sẽ cố 2011=2011a; 2011=2011b; 2011=2011c; 2011=2011d

=> a = b = c = d = 1

=> M = 4

5 tháng 8 2021

\(TH1:a+b+c+d\ne0\)

\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)

\(\Rightarrow\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1=\dfrac{a+b+c+2d}{d}-1\)

\(\Rightarrow\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)

\(\Rightarrow a=b=c=d\)

\(M=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{a+d}{b+c}\)

\(=1+1+1+1\)

\(=4\)

\(TH2:a+b+c+d=0\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=-\left(c+d\right)\\b+c=-\left(d+a\right)\\c+d=-\left(a+b\right)\\d+a=-\left(b+c\right)\end{matrix}\right.\)

\(M=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{a+d}{b+c}\)

\(=-\dfrac{c+d}{c+d}-\dfrac{d+a}{d+a}-\dfrac{a+b}{a+b}-\dfrac{b+c}{b+c}\)

\(=-1-1-1-1\)

\(=-4\)

4 tháng 1 2022

Ta có:

\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)

⇔ \(\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1\)

    \(=\dfrac{a+b+c+2d}{d}-1\)

⇔ \(\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)

Nếu a+b+c+d=0

⇒a+b=−(c+d);c+b=−(a+d);c+d=−(a+b);a+d=−(c+b)

Thay vào M, ta có:

\(M=\dfrac{a+b}{-\left(a+b\right)}=\dfrac{b+c}{-\left(b+c\right)}=\dfrac{c+d}{-\left(c+d\right)}=\dfrac{a+d}{-\left(a+d\right)}=-1\)

Nếu a+b+c+d ≠0

⇒ \(a=b=c=d\)

Thay vào M, ta có

\(M=\dfrac{a+b}{a+b}=\dfrac{b+c}{b+c}=\dfrac{c+d}{c+d}=\dfrac{d+a}{d+a}=1\)

4 tháng 1 2022

Cắt cu 77

 

14 tháng 11 2021

\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}=\dfrac{1}{3}\\ \Rightarrow\left\{{}\begin{matrix}b+c+d=3a\\a+c+d=3b\\a+b+d=3c\\a+b+c=3d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b+c+d=2a\\a+b+c+d=2b\\a+b+c+d=2c\\a+b+c+d=2d\end{matrix}\right.\\ \Rightarrow2a=2b=2c=2d\\ \Rightarrow a=b=c=d\\ \Rightarrow A=\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}=1+1+1+1=4\)

30 tháng 11 2021

ab+c+d=ba+c+d=ca+b+d=da+b+c=a+b+c+d3(a+b+c+d)=13⇒⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩b+c+d=3aa+c+d=3ba+b+d=3ca+b+c=3d⇒⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩a+b+c+d=2aa+b+c+d=2ba+b+c+d=2ca+b+c+d=2d⇒2a=2b=2c=2d⇒a=b=c=d⇒A=a+aa+a+a+aa+a+a+aa+a+a+aa+a=1+1+1+1=4

3 tháng 12 2021

TH1: \(a+b+c+d\ne0\)

\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)

\(\Rightarrow\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1=\dfrac{a+b+c+2d}{d}-1\)

\(\Rightarrow\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+2d}{d}\)

\(\Rightarrow a=b=c=d\)

\(P=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)

\(\Rightarrow P=1+1+1+1\)

\(\Rightarrow P=4\)

TH2: \(a+b+c+d=0\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=-\left(c+d\right)\\b+c=-\left(d+a\right)\\c+d=-\left(a+b\right)\\d+a=-\left(b+c\right)\end{matrix}\right.\)

\(P=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)

\(\Rightarrow P=\dfrac{-\left(c+d\right)}{c+d}+\dfrac{-\left(d+a\right)}{d+a}+\dfrac{-\left(a+b\right)}{a+b}+\dfrac{-\left(b+c\right)}{b+c}\)

\(\Rightarrow P=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)\)

\(\Rightarrow P=-4\)

4 tháng 12 2021

bn mình nền của bn là nôb team trưởng team là t gaming