Câu 1: Tìm số tụ nhiên n để \(2n^2-n+2⋮2n+1\)
Câu 2: Cho đa thức f(x) thỏa mãn điều kiện:
(x-2013) . f(x) = (x-2014) . f(x-2012)
Chứng minh rằng f(x) có ít nhất 2 nghiệm.
Câu 3: Tìm 2 số tự nhiên x, y sao cho: \(5^x+1=2^y\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left(x^2-4x+3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)
Với \(x=1\): \(0=-1f\left(0\right)\Leftrightarrow f\left(0\right)=0\)do đó \(0\)là một nghiệm của đa thức \(f\left(x\right)\).
Tương tự xét \(x=2,x=3\)có thêm hai nghiệm nữa là \(3\)và \(2\).
2) \(f\left(2\right)=4a-2+b=0\Leftrightarrow4a+b=2\)
Tổng hệ số cao nhất và hệ số tự do là \(a+b\)suy ra \(a+b=-7\).
Ta có hệ:
\(\hept{\begin{cases}4a+b=2\\a+b=-7\end{cases}}\Leftrightarrow\hept{\begin{cases}3a=9\\b=-7-a\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=-10\end{cases}}\).
cho đa thức f (x) thỏa mãn điều kiện x.f(x+1) = (x+2).f(x) .Chứng minh rằng f(x) có ít nhất 2 nghiệm
x.f(x+1) = (x+2).f(x)
Thay x= 0
Ta có :0.f(0+1) = (0+2).f(0)
=>0 = 2.f(0)
=>f(0)=0
Do đó 0 là một nghiệm của đa thức f(x) (1)
Thay x=-2
Ta có: (-2).f(-2+1)=(-2+2).f(-2)
=>(-2).f(-1) = 0 .f(-2)
=>(-2).f(-1)=0
=>f(-1)=0
Do đó -1 là một nghiệm của đa thức f(x) (2)
Vậy từ (1) và (2) =>Đa thức f(x) có ít nhất 2 nghiệm là 0 và -1 (đpcm)
tham khảo nha
https://olm.vn/hoi-dap/detail/77562326250.html
1. Cho đa thức f (x) thỏa mãn ( x\(^2\) - 4x + 3) .f ( x + 1 ) = (x - 2).f ( x - 1 ). Chứng tỏ đa thức f (x) có ít nhất 3 nghiệm.
\(\left(x^2-4x+3\right).f\left(x+1\right)=\left(x-2\right).f\left(x-1\right)\)
\(\text{* Thay}\)\(x=2\)\(,\)\(\text{ta có:}\)
\(\left(2^2-4.2+3\right)f\left(2+1\right)=\left(2-2\right)f\left(2-1\right)\)
\(\rightarrow\left(4-8+3\right)f\left(3\right)=0.f\left(1\right)\)
\(\rightarrow\left(-1\right).f\left(3\right)=0\)
\(\rightarrow f\left(3\right)=0\)
\(\rightarrow x=3\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)
\(\text{* Thay}\)\(x=1\)\(,\)\(\text{ta có:}\)
\(\left(1^2-4.1+3\right)f\left(1+1\right)=\left(1-2\right).f\left(1-1\right)\)
\(\rightarrow\left(1-4+3\right).f\left(2\right)=-1.f\left(0\right)\)
\(\rightarrow0.f\left(2\right)=-1.f\left(0\right)\)
\(\rightarrow0=\left(-1\right).f\left(0\right)\)
\(\rightarrow f\left(0\right)=0\)
\(\rightarrow x=0\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)
\(\text{* Thay}\)\(x=3\)\(,\)\(\text{ta có:}\)
\(\left(3^2-4.3+3\right).f\left(3+1\right)=\left(3-2\right).f\left(3-1\right)\)
\(\rightarrow\left(9-12+3\right).f\left(4\right)=1.f\left(2\right)\)
\(\rightarrow0.f\left(4\right)=1.f\left(2\right)\)
\(\rightarrow0=1.f\left(2\right)\)
\(\rightarrow f\left(2\right)=0\)
\(\rightarrow x=2\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)
\(\text{Vậy ...}\)
Câu 1:
Ta có:
\(\left(2n^2-n+2\right)\div\left(2n+1\right)=n-1+\dfrac{3}{2n+1}\)
Để \(\left(2n^2-n+2\right)⋮\left(2n+1\right)\)
Thì \(3⋮2n+1\) Hay \(2n+1\inƯ\left(3\right)\)
Mà \(Ư\left(3\right)=\left\{\pm1;\pm3\right\}\)
Vậy \(n=\left\{-2;-1;0;1\right\}\)
Câu 2:
Thay \(x=2013\) vào đẳng thức ta có:
\(\left(2013-2013\right).f\left(2013\right)=\left(2013-2014\right).f\left(2013-2012\right)\)
\(\Rightarrow f\left(1\right)=0\)
\(\Rightarrow x=1\) là một nghiệm của đa thức \(f\left(x\right)\)
Thay \(x=2014\) vào đẳng thức ta có:
\(\left(2014-2013\right).f\left(2014\right)=\left(2014-2014\right).f\left(2014-2012\right)\)
\(\Rightarrow f\left(2014\right)=0\)
\(\Rightarrow x=2014\) là một nghiệm của đa thức \(f\left(x\right)\)
Vậy đa thức \(f\left(x\right)\) có ít nhất 2 nghiệm \(x=1;x=2014\)
Câu 3:
Ta có:
\(5\equiv1\) (\(mod\) \(4\)) \(\Rightarrow5^x\equiv1\) (\(mod\) \(4\))
\(\Rightarrow5^x+1\equiv2\) (\(mod\) \(4\)) \(\Rightarrow y=1\)
Thay vào đẳng thức trên ta có:
\(5^x+1=2\Rightarrow5^x=1\Rightarrow x=0\)
Vậy \(\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)
Câu 4: Tìm x:
\(\left(x-2013\right)^{x+1}-\left(x-2013\right)^{x+10}=0\)
Cho mình hỏi thêm câu này nữa :))