K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2021

a, \(\left|sinx+\dfrac{1}{2}\right|=\dfrac{1}{2}\)

\(\Leftrightarrow sin^2x+sinx+\dfrac{1}{4}=\dfrac{1}{4}\)

\(\Leftrightarrow sin^2x+sinx=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=-\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)

16 tháng 8 2021

b, \(tan^2\left(x+\dfrac{\pi}{6}\right)=3\)

\(\Leftrightarrow tan\left(x+\dfrac{\pi}{6}\right)=\pm\sqrt{3}\)

\(\Leftrightarrow x+\dfrac{\pi}{6}=\pm\dfrac{\pi}{3}+k\pi\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k\pi\\x=-\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)

23 tháng 6 2021

a, Ta có : \(\sin\left(3x+60\right)=\dfrac{1}{2}\)

\(\Rightarrow3x+60=30+2k180\)

\(\Rightarrow3x=2k180-30\)

\(\Leftrightarrow x=120k-10\)

Vậy ...

b, Ta có : \(\cos\left(2x-\dfrac{\pi}{3}\right)=-\dfrac{\sqrt{2}}{2}\)

\(\Rightarrow2x-\dfrac{\pi}{3}=\dfrac{3}{4}\pi+k2\pi\)

\(\Leftrightarrow x=\dfrac{13}{24}\pi+k\pi\)

Vậy ...

c, Ta có : \(tan\left(x+\dfrac{\pi}{6}\right)=\sqrt{3}\)

\(\Rightarrow x+\dfrac{\pi}{6}=\dfrac{\pi}{3}+k\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{6}+k\pi\)

Vậy ...

d, Ta có : \(\cot\left(2x+\pi\right)=-1\)

\(\Rightarrow2x+\pi=\dfrac{3}{4}\pi+k\pi\)

\(\Leftrightarrow x=-\dfrac{1}{8}\pi+\dfrac{k}{2}\pi\)

Vậy ...

 

23 tháng 6 2021

a) \(sin\left(3x+60^0\right)=\dfrac{1}{2}\)

\(\Leftrightarrow sin\left(3x+\dfrac{\pi}{3}\right)=sin\dfrac{\pi}{6}\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+\dfrac{\pi}{3}=\dfrac{\pi}{6}+k2\pi\\3x+\dfrac{\pi}{3}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)(\(k\in Z\))\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\pi}{18}+\dfrac{k2\pi}{3}\\x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\end{matrix}\right.\)(\(k\in Z\))

Vậy...

b) Pt\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=cos\dfrac{3\pi}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=\dfrac{3\pi}{4}+k2\pi\\2x-\dfrac{\pi}{3}=-\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)(\(k\in Z\))\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{13\pi}{24}+k\pi\\x=-\dfrac{5\pi}{24}+k\pi\end{matrix}\right.\)(\(k\in Z\))

Vậy...

c) Pt \(\Leftrightarrow tan\left(x+\dfrac{\pi}{6}\right)=tan\dfrac{\pi}{3}\)

\(\Leftrightarrow x+\dfrac{\pi}{6}=\dfrac{\pi}{3}+k\pi,k\in Z\)\(\Leftrightarrow x=\dfrac{\pi}{6}+k\pi,k\in Z\)

Vậy...

d) Pt \(\Leftrightarrow tan\left(2x+\pi\right)=-1\)

\(\Leftrightarrow2x+\pi=-\dfrac{\pi}{4}+k\pi,k\in Z\)

\(\Leftrightarrow x=-\dfrac{5\pi}{8}+\dfrac{k\pi}{2},k\in Z\)

Vậy...

5 tháng 9 2021

1, \(\left(sinx+\dfrac{sin3x+cos3x}{1+2sin2x}\right)=\dfrac{3+cos2x}{5}\)

⇔ \(\dfrac{sinx+2sinx.sin2x+sin3x+cos3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)

⇔ \(\dfrac{sinx+2sinx.sin2x+sin3x+cos3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)

⇔ \(\dfrac{sinx+cosx-cos3x+sin3x+cos3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)

⇔ \(\dfrac{sinx+cosx+sin3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)

⇔ \(\dfrac{2sin2x.cosx+cosx}{1+2sin2x}=\dfrac{3+cos2x}{5}\)

⇔ \(\dfrac{cosx\left(2sin2x+1\right)}{1+2sin2x}=\dfrac{2+2cos^2x}{5}\)

⇒ cosx = \(\dfrac{2+2cos^2x}{5}\)

⇔ 2cos2x - 5cosx + 2 = 0

⇔ \(\left[{}\begin{matrix}cosx=2\\cosx=\dfrac{1}{2}\end{matrix}\right.\)

⇔ \(x=\pm\dfrac{\pi}{3}+k.2\pi\) , k là số nguyên

2, \(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}.\left(1+cot2x.cotx\right)=0\)

⇔ \(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}.\dfrac{cos2x.cosx+sin2x.sinx}{sin2x.sinx}=0\)

⇔ \(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}.\dfrac{cosx}{sin2x.sinx}=0\)

⇔ \(48-\dfrac{1}{cos^4x}-\dfrac{2cosx}{2cosx.sin^4x}=0\)

⇒ \(48-\dfrac{1}{cos^4x}-\dfrac{1}{sin^4x}=0\). ĐKXĐ : sin2x ≠ 0 

⇔ \(\dfrac{1}{cos^4x}+\dfrac{1}{sin^4x}=48\)

⇒ sin4x + cos4x = 48.sin4x . cos4x

⇔ (sin2x + cos2x)2 - 2sin2x. cos2x = 3 . (2sinx.cosx)4

⇔ 1 - \(\dfrac{1}{2}\) . (2sinx . cosx)2 = 3(2sinx.cosx)4

⇔ 1 - \(\dfrac{1}{2}sin^22x\) = 3sin42x

⇔ \(sin^22x=\dfrac{1}{2}\) (thỏa mãn ĐKXĐ)

⇔ 1 - 2sin22x = 0

⇔ cos4x = 0

⇔ \(x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\)

 

5 tháng 9 2021

3, \(sin^4x+cos^4x+sin\left(3x-\dfrac{\pi}{4}\right).cos\left(x-\dfrac{\pi}{4}\right)-\dfrac{3}{2}=0\)

⇔ \(\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x+\dfrac{1}{2}sin\left(4x-\dfrac{\pi}{2}\right)+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)

⇔ \(1-\dfrac{1}{2}sin^22x+\dfrac{1}{2}sin2x-\dfrac{1}{2}cos4x-\dfrac{3}{2}=0\)

⇔ \(\dfrac{1}{2}sin2x-\dfrac{1}{2}cos4x-\dfrac{1}{2}-\dfrac{1}{2}sin^22x=0\)

⇔ sin2x - sin22x - (1 + cos4x) = 0

⇔ sin2x - sin22x - 2cos22x = 0

⇔ sin2x - 2 (cos22x + sin22x) + sin22x = 0

⇔ sin22x + sin2x - 2 = 0

⇔ \(\left[{}\begin{matrix}sin2x=1\\sin2x=-2\end{matrix}\right.\)

⇔ sin2x = 1

⇔ \(2x=\dfrac{\pi}{2}+k.2\pi\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\)

4, cos5x + cos2x + 2sin3x . sin2x = 0

⇔ cos5x + cos2x + cosx - cos5x = 0

⇔ cos2x + cosx = 0

⇔ \(2cos\dfrac{3x}{2}.cos\dfrac{x}{2}=0\)

⇔ \(cos\dfrac{3x}{2}=0\)

⇔ \(\dfrac{3x}{2}=\dfrac{\pi}{2}+k\pi\)

⇔ x = \(\dfrac{\pi}{3}+k.\dfrac{2\pi}{3}\)

Do x ∈ [0 ; 2π] nên ta có \(0\le\dfrac{\pi}{3}+k\dfrac{2\pi}{3}\le2\pi\)

⇔ \(-\dfrac{1}{2}\le k\le\dfrac{5}{2}\). Do k là số nguyên nên k ∈ {0 ; 1 ; 2}

Vậy các nghiệm thỏa mãn là các phần tử của tập hợp 

\(S=\left\{\dfrac{\pi}{3};\pi;\dfrac{5\pi}{3}\right\}\)

NV
26 tháng 2 2023

a.

\(\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)=3sinx+cosx+2\)

\(\Leftrightarrow sin2x+cos2x=3sinx+cosx+2\)

\(\Leftrightarrow2sinx.cosx-3sinx+2cos^2x-cosx-3=0\)

\(\Leftrightarrow sinx\left(2cosx-3\right)+\left(cosx+1\right)\left(2cosx-3\right)=0\)

\(\Leftrightarrow\left(2cosx-3\right)\left(sinx+cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\dfrac{3}{2}\left(vn\right)\\sinx+cosx+1=0\end{matrix}\right.\)

\(\Rightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=-1\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow...\)

NV
26 tháng 2 2023

b.

ĐKXĐ: \(cosx\ne\dfrac{1}{2}\Rightarrow\left[{}\begin{matrix}x\ne\dfrac{\pi}{3}+k2\pi\\x\ne-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\dfrac{\left(2-\sqrt{3}\right)cosx-2sin^2\left(\dfrac{x}{2}-\dfrac{\pi}{4}\right)}{2cosx-1}=1\)

\(\Rightarrow\left(2-\sqrt{3}\right)cosx+cos\left(x-\dfrac{\pi}{2}\right)=2cosx\)

\(\Leftrightarrow-\sqrt{3}cosx+sinx=0\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=0\)

\(\Rightarrow x-\dfrac{\pi}{3}=k\pi\)

\(\Rightarrow x=\dfrac{\pi}{3}+k\pi\)

Kết hợp ĐKXĐ \(\Rightarrow x=\dfrac{4\pi}{3}+k2\pi\)