K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

A2 A1 Đ1 Đ2

b) 2mA=0.002A

Ta có trong mạch điện song song hiệu điện thế của đoạn mạch chính = tổng các cường độ dòng điện mạch rẽ

\(\Rightarrow\)I2=I-I1= 0.18-0.002=0.178A

c) Giải tương tự như trên

kết quả là 0.035A

mk ko chắc nữa chúc bn học tốt ok

26 tháng 5 2022

đc ko bạn ơi

Câu I: (4.0 điểm). Thực hiện phép tính

1) \mathrm{A}=\frac{5 \cdot\left(2^{2} \cdot 3^{2}\right)^{9} \cdot\left(2^{2}\right)^{6}-2 \cdot\left(2^{2} \cdot 3\right)^{14} \cdot 3^{4}}{5 \cdot 2^{28} \cdot 3^{18}-7 \cdot 2^{29} \cdot 3^{18}}

2) \mathrm{B}=81 \cdot\left[\frac{12-\frac{12}{7}-\frac{12}{289}-\frac{12}{85}}{4-\frac{4}{7}-\frac{4}{289}-\frac{4}{85}}: \frac{5+\frac{5}{13}+\frac{5}{169}+\frac{5}{91}}{6+\frac{6}{13}+\frac{6}{169}+\frac{6}{91}}\right] \cdot \frac{158158158}{711711711}

Câu II: (4.0 điểm)

1) So sánh P và Q

Biết \mathrm{P}=\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013} và \mathrm{Q}=\frac{2010+2011+2012}{2011+2012+2013}

2) Tìm hai số tự nhiên a và b, biết: BCNN(a, b) = 420; ƯCLN(a, b) = 21 và a + 21 = b.

Câu III: (4.0 điểm)

1) Chứng minh rằng: Nếu 7x + 4y ⋮ 37 thì 13x +18y ⋮ 37

2) Cho \mathrm{A}=\frac{1}{2}+\frac{3}{2}+\left(\frac{3}{2}\right)^{2}+\left(\frac{3}{2}\right)^{3}+\left(\frac{3}{2}\right)^{4}+\ldots+\left(\frac{3}{2}\right)^{2012} \text { và } \mathrm{B}=\left(\frac{3}{2}\right)^{2013}: 2

Tính B – A

Câu IV. (6.0 điểm)

Cho xÂy, trên tia Ax lấy điểm B sao cho AB = 6 cm. Trên tia đối của tia Ax lấy điểm D sao cho AD = 4 cm.

1) Tính BD.

2) Lấy C là một điểm trên tia Ay. Biết BĈD = 80o, BĈA = 45o. Tính AĈD

3) Biết AK = 2 cm (K thuộc BD). Tính BK

Câu V: (2.0 điểm)

1) Tìm các số tự nhiên x, y sao cho: \frac{x}{9}-\frac{3}{y}=\frac{1}{18}

2) Tìm số tự nhiên n để phân số B=\frac{10 n-3}{4 n-10}đạt GTLN. Tìm giá trị lớn nhất đó

26 tháng 5 2022

đề môn j 

NV
27 tháng 12 2020

1.

Để ý rằng \(\dfrac{36}{4}=9\) nên 4 đỉnh tạo thành hình vuông khi chúng lần lượt cách nhau 9 đỉnh

Do đó ta có các bộ (1;10;19;28), (2;11;20;29),... (9; 18; 27, 36), tổng cộng 9 bộ hay 9 hình vuông

Xác suất: \(P=\dfrac{9}{C_{36}^4}=...\)

2.

Trong mp (ABCD), nối BM kéo dài cắt AD tại E

\(\Rightarrow SE=\left(SAD\right)\cap\left(SBM\right)\)

b. Gọi N là trung điểm SC \(\Rightarrow\dfrac{DG}{DN}=\dfrac{2}{3}\) (t/c trọng tâm)

Do \(AD||BC\) , áp dụng Talet:

\(\dfrac{IB}{ID}=\dfrac{BC}{AD}=\dfrac{1}{2}\Rightarrow\dfrac{IB}{ID}=\dfrac{1}{2}\Rightarrow\dfrac{ID}{BD}=\dfrac{2}{3}\)

\(\Rightarrow\dfrac{DG}{DN}=\dfrac{ID}{IB}\Rightarrow IG||BN\Rightarrow IG||\left(SBC\right)\)

c. Trong mp (SAD), nối QE cắt SD tại P

Talet: \(\dfrac{BC}{DE}=\dfrac{MC}{MD}=1\Rightarrow BC=DE\Rightarrow DE=\dfrac{1}{3}AE\)

Áp dụng Menelaus cho tam giác SAE:

\(\dfrac{QS}{QA}.\dfrac{AE}{ED}.\dfrac{DP}{PS}=1\) \(\Leftrightarrow1.3.\dfrac{DP}{PS}=1\Leftrightarrow SP=3DP\)

\(\Rightarrow\dfrac{SP}{SD}=\dfrac{3}{4}\)

NV
27 tháng 12 2020

3.

\(2sinx.cosx-4sinx+mcosx-2m=0\)

\(\Leftrightarrow2sinx\left(cosx-2\right)+m\left(cosx-2\right)=0\)

\(\Leftrightarrow\left(2sinx+m\right)\left(cosx-2\right)=0\)

\(\Leftrightarrow sinx=-\dfrac{m}{2}\)

Phương trình có nghiệm khi và chỉ khi:

\(-1\le-\dfrac{m}{2}\le1\Leftrightarrow-2\le m\le2\)

4.

\(cot\dfrac{A}{2}+cot\dfrac{C}{2}=2cot\dfrac{B}{2}\Leftrightarrow\dfrac{cos\dfrac{A}{2}}{sin\dfrac{A}{2}}+\dfrac{cos\dfrac{C}{2}}{sin\dfrac{C}{2}}=\dfrac{2cos\dfrac{B}{2}}{sin\dfrac{B}{2}}\)

\(\Leftrightarrow\dfrac{cos\dfrac{A}{2}sin\dfrac{C}{2}+cos\dfrac{C}{2}sin\dfrac{A}{2}}{sin\dfrac{A}{2}sin\dfrac{C}{2}}=\dfrac{2cos\dfrac{B}{2}}{sin\dfrac{B}{2}}\)

\(\Leftrightarrow\dfrac{sin\left(\dfrac{A+C}{2}\right)}{sin\dfrac{A}{2}sin\dfrac{C}{2}}=\dfrac{2cos\dfrac{B}{2}}{sin\dfrac{B}{2}}\Leftrightarrow\dfrac{cos\dfrac{B}{2}}{sin\dfrac{A}{2}sin\dfrac{C}{2}}=\dfrac{2cos\dfrac{B}{2}}{sin\dfrac{B}{2}}\)

\(\Leftrightarrow sin\dfrac{B}{2}=2sin\dfrac{A}{2}sin\dfrac{C}{2}\)

\(\Leftrightarrow sin\dfrac{B}{2}=cos\left(\dfrac{A-C}{2}\right)-cos\left(\dfrac{A+C}{2}\right)\)

\(\Leftrightarrow sin\dfrac{B}{2}=cos\left(\dfrac{A-C}{2}\right)-sin\dfrac{B}{2}\)

\(\Leftrightarrow2sin\dfrac{B}{2}=cos\left(\dfrac{A-C}{2}\right)\Leftrightarrow2sin\dfrac{B}{2}cos\dfrac{B}{2}=cos\dfrac{B}{2}.cos\left(\dfrac{A-C}{2}\right)\)

\(\Leftrightarrow2sinB=cos\left(\dfrac{A+B-C}{2}\right)+cos\left(\dfrac{B+C-A}{2}\right)\)

\(\Leftrightarrow2sinB=sinC+sinA\)

\(\Leftrightarrow\dfrac{2b}{R}=\dfrac{c}{R}+\dfrac{a}{R}\Leftrightarrow2b=a+c\)

23 tháng 12 2020

Nhân vật Giôn-xi trong Chiếc lá cuối cùng là một họa sĩ nghèo, cuộc sống bấp bênh. Mùa đông năm ấy cô bị mắc bệnh viêm phổi và đã gắn sự sống của mình với những chiếc lá thường xuân trên tường ở bên ngoài cửa sổ. Cô nghĩ: Bao giờ chiếc lá cuối cùng rụng xuống cũng là lúc ta lìa đời. Nhưng Xiu - người bạn cùng phòng và cụ Bơ-men - họa sĩ già ở lầu trên, biết được ý định ấy của Giôn-xi nên đã tìm cách khiến cô muốn sống trở lại. Cụ Bơ-men đã thức suốt đêm mưa tuyết để vẽ chiếc lá trên tường, chiếc lá giống như thật khiến Giôn-xi cảm thấy: chiếc lá qua đêm mưa tuyết vẫn kiên cường bám trụ, hà cớ gì ta lại từ bỏ cuộc sống này? Và cô lại vui vẻ và có ý chí đấu tranh với bệnh tật. Như vậy, Giôn-xi quả thật đáng trách khi cô có ý định từ bỏ cuộc sống . Nhưng nhờ tình yêu thương giữa con người, tính nhân đạo trong mỗi con người mà những người xung quanh đã vực dậy tinh thần, ý chí trong cô. ...

17: A=M*N

=25a^3b*8a^2b^3=200a^5b^4

M và N cùng dấu

=>M*N>0

=>200*a^5*b^4>0

=>a^5>0

=>a>0