K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2018

+ Mặt cầu

 

 

Vậy (S) có tâm I(5; -1; -13), bán kính R = 5.

+ (α) song song với d và d’

⇒ (α) nhận vtcp của d và d’ là Giải bài 8 trang 93 sgk Hình học 12 | Để học tốt Toán 12 = (2; -3; 2) và Giải bài 8 trang 93 sgk Hình học 12 | Để học tốt Toán 12 = (3 ; -2 ; 0) là các vtcp

⇒ (α) nhận Giải bài 8 trang 93 sgk Hình học 12 | Để học tốt Toán 12 = (4; 6; 5) là vtpt

⇒ (α): 4x + 6y + 5z + D = 0.

(α) tiếp xúc với (S)

⇒ d(I; α) = R

Giải bài 8 trang 93 sgk Hình học 12 | Để học tốt Toán 12

Vậy có hai mặt phẳng thỏa mãn là:

Giải bài 8 trang 93 sgk Hình học 12 | Để học tốt Toán 12

5 tháng 8 2018

5 tháng 3 2017

Chọn A

Mặt phẳng (P) có vecto pháp tuyến là tích có hướng của hai vecto chỉ phương của hai đường thẳng a và a’. Ta tìm d dựa trên điều kiện mặt cầu tiếp xúc với mặt phẳng.

7 tháng 4 2016

Mặt phẳng (P) có vec tơ pháp tuyến \(\overrightarrow{n}=\left(1;1;-2\right);\overrightarrow{AB}=\left(-2;1;-1\right)\)

Ta có \(\left[\overrightarrow{n};\overrightarrow{AB}\right]=\left(1;5;3\right)\)

(Q) vuông góc với (P), song song với đường thẳng AB suy ra (Q) có vectơ pháp tuyến là \(\left[\overrightarrow{n_1};\overrightarrow{AB}\right]=\left(1;5;3\right)\) nên phương trình mặt phẳng (Q) có dạng \(x+5y+3z+m=0\)

Mặt cầu (S) có tâm \(I\left(1;-1;1\right)\), bán kính R = 3

Mặt phẳng (Q) tiếp xúc với (S) có \(d\left(I,\left(Q\right)\right)=R\Leftrightarrow\frac{\left|1-5+3+m\right|}{\sqrt{35}}\)

\(\Leftrightarrow\left|m-1\right|=3\sqrt{35}\Leftrightarrow\begin{cases}m=1+3\sqrt{35}\\m=1-3\sqrt{35}\end{cases}\)

- Với \(m=1+3\sqrt{35}\) ta có phương trình mặt phẳng (Q) là : \(x+5y+3z+1+3\sqrt{35}=0\)

- Với \(m=1-3\sqrt{35}\) ta có phương trình mặt phẳng (Q) là : \(x+5y+3z+1-3\sqrt{35}=0\)

 
22 tháng 5 2017

Ôn tập chương III

Ôn tập chương III

Ôn tập chương III

14 tháng 4 2016

\(\overrightarrow{AB}=\left(-1;-2;1\right)\)\(\overrightarrow{n_{\alpha}}=\left(2;-1;2\right)\)\(\Rightarrow\overrightarrow{n_p}=\left[\overrightarrow{AB};\overrightarrow{n_{\alpha}}\right]=\left(-3;4;5\right)\)

Phương trình mặt phẳng (P) : \(-3x+4y+5z=0\)

\(R=d\left(A;\left(\alpha\right)\right)=\frac{\left|6-1+2+1\right|}{\sqrt{9}}=\frac{8}{3}\)

Phương trình mặt cầu (S) : \(\left(x-3\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=\frac{64}{9}\)

3 tháng 4 2017

Mặt cầu (S) có tâm I(3, -2, 1) và bán kính R = 10.

Khoảng cách từ tâm I của mặt cầu (S) đến mặt phẳng (α) là:

d(I, α) = ∣∣ ∣∣2.3−2.(−2)−1+9√22+(−2)2+(−1)2∣∣ ∣∣=183=6|2.3−2.(−2)−1+922+(−2)2+(−1)2|=183=6

Vì d(I, α) < R ⇒⇒ Mặt phẳng (α) cắt mặt cầu (S) theo đường tròn (C) có phương trình (C):

{2x−2y−z+9=0(x−3)2+(y+2)2+(z−1)2=100{2x−2y−z+9=0(x−3)2+(y+2)2+(z−1)2=100

Tâm K của đường tròn (C) là hình chiếu vuông góc của tâm I của mặt cầu trên mặt phẳng (α).

Mặt phẳng (α) có vectơ pháp tuyến →nn→ = (2, -2. -1).

Đường thẳng d qua I và vuông góc với (α) nhận →nn→ = (2, -2, -1) làm vectơ chỉ phương và có phương trình d :

⎧⎪⎨⎪⎩x=3+2ty=−2−2tz=1−t{x=3+2ty=−2−2tz=1−t

Thay t = -2 vào phương trình của d, ta được toạ độ tâm K của đường tròn (C).

⎧⎪⎨⎪⎩x=3+2.(−2)=−1y=−2−2.(−2)=2z=1−2.(−2)=3{x=3+2.(−2)=−1y=−2−2.(−2)=2z=1−2.(−2)=3

⇒⇒ K(-1, 2, 3)

Ta có: IK2 = (-1 - 3)2 + (2 + 2)2 + (3 - 1)2 = 36.

Bán kính r của đường tròn (C) là:

r2 = R2 - IK2 = 102 - 36 = 64 ⇒⇒ r= 8



9 tháng 4 2017

Giải

Mặt cầu (S) có tâm I(3, -2, 1) và bán kính R = 10.

Khoảng cách từ tâm I của mặt cầu (S) đến mặt phẳng (α) là:

d(I, α) = ∣∣ ∣∣2.3−2.(−2)−1+9√22+(−2)2+(−1)2∣∣ ∣∣=183=6|2.3−2.(−2)−1+922+(−2)2+(−1)2|=183=6

Vì d(I, α) < R ⇒⇒ Mặt phẳng (α) cắt mặt cầu (S) theo đường tròn (C) có phương trình (C):

{2x−2y−z+9=0(x−3)2+(y+2)2+(z−1)2=100{2x−2y−z+9=0(x−3)2+(y+2)2+(z−1)2=100

Tâm K của đường tròn (C) là hình chiếu vuông góc của tâm I của mặt cầu trên mặt phẳng (α).

Mặt phẳng (α) có vectơ pháp tuyến →nn→ = (2, -2. -1).

Đường thẳng d qua I và vuông góc với (α) nhận →nn→ = (2, -2, -1) làm vectơ chỉ phương và có phương trình d :

⎧⎪⎨⎪⎩x=3+2ty=−2−2tz=1−t{x=3+2ty=−2−2tz=1−t

Thay t = -2 vào phương trình của d, ta được toạ độ tâm K của đường tròn (C).

⎧⎪⎨⎪⎩x=3+2.(−2)=−1y=−2−2.(−2)=2z=1−2.(−2)=3{x=3+2.(−2)=−1y=−2−2.(−2)=2z=1−2.(−2)=3

⇒⇒ K(-1, 2, 3)

Ta có: IK2 = (-1 - 3)2 + (2 + 2)2 + (3 - 1)2 = 36.

Bán kính r của đường tròn (C) là:

r2 = R2 - IK2 = 102 - 36 = 64 ⇒⇒ r= 8


30 tháng 3 2017

Đáp án B

Pt pháp tuyến của mặt phẳng cần tìm là  n ⇀ = d , ⇀ ∆ ⇀ = (1;0;1)

Pt có dạng: x+z+D=0

Khoảng cách từ O (-1;1;-2) đến mp là   2

⇒ D=1

Pt có dạng : x+z+1=0