giải pt \(\dfrac{2-x}{2007}-1=\dfrac{1-x}{2008}-\dfrac{x}{2009}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
PT \(\Leftrightarrow \frac{(x+2)^3}{8}-\frac{x^3+8}{2}=0\)
\(\Leftrightarrow (x+2)^3-4(x^3+8)=0\)
\(\Leftrightarrow (x+2)^3-4(x+2)(x^2-2x+4)=0\)
\(\Leftrightarrow (x+2)[(x+2)^2-4(x^2-2x+4)]=0\)
\(\Leftrightarrow (x+2)(-3x^2+12x-12)=0\)
\(\Leftrightarrow (x+2)(x^2-4x+4)=0\Leftrightarrow (x+2)(x-2)^2=0\Rightarrow x=\pm 2\)
b) Bạn kiểm tra lại xem có sai đề không?
Không chẳng có vấn đề gì cả. có thể sai so với cái đề nào đó "nội hàm nó đúng"
\(\dfrac{x+2}{2008}+\dfrac{x+3}{2007}=\dfrac{-x+4}{2006}+\dfrac{-x-2008}{6}\)
\(\left(\dfrac{1}{2008}+\dfrac{1}{2007}+\dfrac{1}{2006}+\dfrac{1}{6}\right).x=\left(\dfrac{4}{2006}-\dfrac{2008}{6}-\dfrac{2}{2008}-\dfrac{3}{2007}\right)\)\(x=\dfrac{\left(\dfrac{4}{2006}-\dfrac{2008}{6}-\dfrac{2}{2008}-\dfrac{3}{2007}\right)}{\left(\dfrac{1}{2008}+\dfrac{1}{2007}+\dfrac{1}{2006}+\dfrac{1}{6}\right).}\)
Thích thì rút gọn chẳng thích thì kệ nó
Giải:
\(\dfrac{2-x}{2007}-1=\dfrac{1-x}{2008}-\dfrac{x}{2009}\)
\(\Leftrightarrow\dfrac{2-x}{2007}-1+2=\dfrac{1-x}{2008}-\dfrac{x}{2009}+2\)
\(\Leftrightarrow\dfrac{2-x}{2007}+1=\dfrac{1-x}{2008}+1-\dfrac{x}{2009}+1\)
\(\Leftrightarrow\dfrac{2-x+2007}{2007}=\dfrac{1-x+2008}{2008}-\dfrac{x+2009}{2009}\)
\(\Leftrightarrow\dfrac{2009-x}{2007}=\dfrac{2009-x}{2008}-\dfrac{2009-x}{2009}\)
\(\Leftrightarrow\dfrac{2009-x}{2007}-\dfrac{2009-x}{2008}+\dfrac{2009-x}{2009}=0\)
\(\Leftrightarrow\left(2009-x\right)\left(\dfrac{1}{2007}-\dfrac{1}{2008}+\dfrac{1}{2009}\right)=0\)
Vì \(\dfrac{1}{2007}-\dfrac{1}{2008}+\dfrac{1}{2009}\ne0\)
\(\Leftrightarrow2009-x=0\)
\(\Leftrightarrow x=2009\)
Vậy ...
\(\dfrac{2-x}{2007}-1=\dfrac{1-x}{2008}-\dfrac{x}{2009}\)
\(\Leftrightarrow\left(\dfrac{2-x}{2007}+1\right)-\left(1+1\right)=\left(\dfrac{1-x}{2008}+1\right)-\left(\dfrac{x}{2009}+1\right)\)
\(\Leftrightarrow\dfrac{2-x+2007}{2007}=\dfrac{1-x+2008}{2008}-\dfrac{x+2009}{2009}\)
\(\Leftrightarrow\dfrac{2-x+2007}{2007}=\dfrac{1-x+2008}{2008}+\dfrac{-x+2009}{2009}\)
\(\Leftrightarrow\dfrac{2009-x}{2007}=\dfrac{2009-x}{2008}+\dfrac{2009-x}{2009}\)
\(\Leftrightarrow\left(2009-x\right)\left(\dfrac{1}{2007}-\dfrac{1}{2008}-\dfrac{1}{2009}\right)=0\)
\(\Leftrightarrow2009-x=0\)
\(\Leftrightarrow x=2009\)
ta có (x+1/2009 +1) + ( x+3/2007 + 1)- (x+5/2005 +1) - (x+7/1993 + 1) = 0
=>(x +100/ 2009) + (x+100/2007) - (x+100/2005)-(x+100/1993)
=> (x +100) * (1/2009 + 1/2007+ 1/2005 + 1/1993) = 0
=> x = -100
Bạn cứ tinh ý để ý đến phần tử và mẫu cộng lại bằng 100. Khi bạn bỏ phần x + 100 ra thì còn lại như trên. Sau đó lược bỏ còn lại x = -100
Mạn phép mk không chép đề , mk làm luôn nhé
\(\dfrac{x+1}{2009}+1+\dfrac{x+3}{2007}+1=\dfrac{x+5}{2005}+1+\dfrac{x+7}{1993}+1\)
⇔ \(\dfrac{x+2010}{2009}+\dfrac{x+2010}{2007}-\dfrac{x+2010}{2005}-\dfrac{x+2010}{1993}=0\)
⇔( x + 2010 )\(\left(\dfrac{1}{2009}+\dfrac{1}{2007}-\dfrac{1}{2005}-\dfrac{1}{1993}\right)=0\)
Ta thấy : \(\dfrac{1}{2009}< \dfrac{1}{2007}< \dfrac{1}{2005}< \dfrac{1}{1993}\)
⇒ \(\dfrac{1}{2009}+\dfrac{1}{2007}-\dfrac{1}{2005}-\dfrac{1}{1993}< 0\)
⇒ x + 2010 = 0
⇒ x = -2010
KL....
\(\Leftrightarrow\left(\dfrac{x-1}{2009}-1\right)+\left(\dfrac{x-2}{2008}-1\right)=\left(\dfrac{x-3}{2007}-1\right)+\left(\dfrac{x-4}{2006}-1\right)\)
=>x-2010=0
hay x=2010
\(\dfrac{2-x}{2007}\) - 1 = \(\dfrac{1-x}{2008}\) - \(\dfrac{x}{2009}\)
<=> \(\dfrac{2-x}{2009}\) +1 -1 +1 = \(\dfrac{1-x}{2008}\) +1 - \(\dfrac{x}{2009}\) +1
<=> \(\dfrac{2-x+2007}{2007}\) = \(\dfrac{1-x+2008}{2008}\) + \(\dfrac{-x+2009}{2009}\)
<=> \(\dfrac{2009-x}{2007}\) = \(\dfrac{2009-x}{2008}\) + \(\dfrac{2009-x}{2009}\)
<=> (2009-x)(\(\dfrac{1}{2007}\) - \(\dfrac{1}{2008}\) - \(\dfrac{1}{2009}\) ) = 0
<=> 2009 -x = 0
hoặc: \(\dfrac{1}{2007}\) - \(\dfrac{1}{2008}\) -\(\dfrac{1}{2009}\) = 0
Vì \(\dfrac{1}{2007}\) \(\ne\) \(\dfrac{1}{2008}\) + \(\dfrac{1}{2009}\)
=> \(\dfrac{1}{2007}\) - (\(\dfrac{1}{2008}\) + \(\dfrac{1}{2009}\) ) \(\ne\) 0
=> 2009 -x =0
<=> x =2009
\(\dfrac{2-x}{2007}-1=\dfrac{1-x}{2008}-\dfrac{x}{2009}\\ \Leftrightarrow\dfrac{2009-x}{2007}-2=\dfrac{2009-x}{2008}-\dfrac{2009-x}{2009}-2\)
\(\Leftrightarrow\left(2009-x\right)\left(\dfrac{1}{2007}-\dfrac{1}{2008}+\dfrac{1}{2009}\right)=0\)
\(\Rightarrow2009-x=0\Leftrightarrow x=2009\)