Cho tam giác ABC có BC = 15 cm, AC = 20 cm, AB = 25 cm.
a) Tính độ dài đường cao CH
b) Gọi C,D là đường phân giác của tam giác ACH. C/m: \(_{\Delta BCD}\) cân
c) Chứng minh: bc2 + CD2 + BD2 = 3 CH2 + 2 BH2 + DH2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có
góc B chung
=>ΔBAC đồng dạng vơi ΔBHA
b: BH=15^2/25=9(cm)
c: EH/EB=AH/AB=AC/BC
=>EH*BC=EB*AC
c, Xét tam giác ABC cân tại A có AH là đường phân giác
nên AH đồng thời là đường cao, là đường trung tuyến
=> AH vuông BC
d, Vì AH là trung tuyến => BH = BC/2 = 4 cm
Theo định lí Pytago tam giác ABH vuông tại H
\(AH=\sqrt{AB^2-BH^2}=\sqrt{5^2-4^2}=3cm\)
e, Xét tam giác ADH và tam giác AEH có :
^ADH = ^AEH = 900
AH _ chung
DAH = ^EAH ( AH là đường phân giác )
Vậy tam giác ADH = tam giác AEH ( ch - gn )
=> HD = HE
Xét tam giác HDE có HD = HE
Vậy tam giác HDE cân tại H
a: BC=25cm
b: Xét ΔBAC có BD là phân giác
nên AD/AB=CD/BC
=>AD/3=CD/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{20}{8}=2.5\)
Do đó: AD=7,5cm; CD=12,5(cm)
b: \(AH=\dfrac{15\cdot20}{25}=12\left(cm\right)\)
\(HB=\dfrac{15^2}{25}=9\left(cm\right)\)
c: góc AID=góc BIH=90 độ-góc DBC
góc ADI=90 độ-góc ABD
mà góc ABD=góc DBC
nên góc ADI=góc AID
hay ΔAID cân tại A
a: Xét ΔCAB có \(AB^2=CA^2+CB^2\)
nên ΔCAB vuông tại A
Xét ΔCAB vuông tại A có CH là đường cao
nên \(CH\cdot AB=CA\cdot CB\)
hay CH=12(cm)
b: \(\widehat{BCD}+\widehat{ACD}=90^0\)
\(\widehat{BDC}+\widehat{HCD}=90^0\)
mà \(\widehat{ACD}=\widehat{HCD}\)
nên \(\widehat{BCD}=\widehat{BDC}\)
hay ΔBDC cân tại B