CMR nếu \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}thì\dfrac{a}{e}=(\dfrac{a-b+c-d}{b-c+d-e})^4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng cauchy-schwarz:
\(\dfrac{a}{b+c}+\dfrac{b}{c+d}+\dfrac{c}{d+e}+\dfrac{d}{e+a}+\dfrac{e}{a+b}=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+bd}+\dfrac{c^2}{cd+ce}+\dfrac{d^2}{ed+ad}+\dfrac{e^2}{ae+be}\ge\dfrac{\left(a+b+c+d\right)^2}{ab+ac+ad+ae+bc+bd+be+cd+ce+de}\)
Giờ chỉ cần chứng minh
\(ab+ac+ad+ae+bc+bd+be+cd+ce+de\le\dfrac{2}{5}\left(a+b+c+d+e\right)^2\)
\(\Leftrightarrow ab+ac+ad+ae+bc+bd+be+cd+ce+de\le2\left(a^2+b^2+c^2+d^2+e^2\right)\)
điều này hiển nhiên đúng theo AM-GM:
\(ab\le\dfrac{a^2+b^2}{2};ac\le\dfrac{a^2+c^2}{2};ad\le\dfrac{a^2+d^2}{2}...\)
Cứ vậy ta thu được đpcm .Dấu = xảy ra khi a=b=c=d=e
P/s: : ]
Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=\dfrac{e}{f}=\dfrac{a+b+c+d+e}{b+c+d+e+f}=k\)
Ta có:
\(\dfrac{a}{f}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}.\dfrac{d}{e}.\dfrac{e}{f}=k^5=\left(\dfrac{a+b+c+d+e}{b+c+d+e+f}\right)^5\)
Đúng là góc học tập của cậu tràn trề đại số và rất ít hình học.
Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=k\Rightarrow a=bk;b=ck;c=dk;d=ek\)
\(\Rightarrow a=bk=ck^2=dk^3=ek^4;b=ek^3\)
\(\Rightarrow\dfrac{a}{e}=\dfrac{ek^4}{e}=k^4\left(1\right)\)
Ta có \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}\Rightarrow\dfrac{a^4}{b^4}=\dfrac{b^4}{c^4}=\dfrac{c^4}{d^4}=\dfrac{d^4}{e^4}=\dfrac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}\left(2\right)\)
Lại có \(\dfrac{a^4}{b^4}=\left(\dfrac{a}{b}\right)^4=\left(\dfrac{ek^4}{ek^3}\right)^4=k^4\left(3\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\RightarrowĐpcm\)
Đặt: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=t\) ta có:
\(\dfrac{2a^4}{2b^4}=\dfrac{3b^4}{3c^4}=\dfrac{4c^4}{4d^4}=\dfrac{5d^4}{5e^4}=t^4\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(t^4=\dfrac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}\)
Mặt khác: \(\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}.\dfrac{d}{e}=\dfrac{a}{e}=t.t.t.t=t^4\)
Ta có đpcm
a) Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{b}{a}=\dfrac{d}{c}\)
\(\Leftrightarrow\dfrac{b}{a}-1=\dfrac{d}{c}-1\)
\(\Leftrightarrow\dfrac{b-a}{a}=\dfrac{d-c}{c}\)
\(\Leftrightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
\(\Leftrightarrow\dfrac{a}{a-b}=\dfrac{c}{c-d}\)(đpcm)
Đặt \(k=\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}\)
Ta có: \(k=\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=\dfrac{a+b+c+d}{b+c+d+e}\) ( t/c dãy tỉ số bằng nhau )
\(\Rightarrow k^4=\left(\dfrac{a+b+c+d}{b+c+d+e}\right)^4\) (1)
\(k^4=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}.\dfrac{d}{e}=\dfrac{a}{e}\) (2)
Từ (1), (2) \(\Rightarrow\left(\dfrac{a+b+c+d}{b+c+d+e}\right)^4=\dfrac{a}{e}\left(đpcm\right)\)
Vậy...
Ta có: \(\dfrac{a^4}{b^4}=\dfrac{a}{b}\cdot\dfrac{a}{b}\cdot\dfrac{a}{b}\cdot\dfrac{a}{b}\)
\(=\dfrac{a}{b}\cdot\dfrac{b}{c}\cdot\dfrac{c}{d}\cdot\dfrac{e}{f}\)
\(=\dfrac{a}{f}\)