1) cho x,y,z là các số thực thỏa mãn \(\left\{{}\begin{matrix}xyz=2\\2+x+xy\ne0\end{matrix}\right.\)
tính B= \(\dfrac{1}{1+y+yz}+\dfrac{2}{2+2z+xz}+\dfrac{2}{2+x+xy}\)
2) giải hpt \(\left\{{}\begin{matrix}\left(y^2-4y\right)\left(2y-x\right)=2\\y^2-2y-x=3\end{matrix}\right.\)
3)GPT \(x^2-2x=2\sqrt{2x-1}\)
4) tìm n nguyên dương để A=\(2^9+2^{13}+2^n\) là số chính phương
5) tìm Min của A=\(\dfrac{\left(x+y+1\right)^2}{xy+y+x}+\dfrac{xy+y+x}{\left(x+y+1\right)^2}\) (x;y dương )
Bài 5: Đặt \(t=\dfrac{\left(x+y+1\right)^2}{xy+x+y}\)
Ta đã biết bđt quen thuộc là \(x^2+y^2+1\ge xy+x+y\)
Vậy nên ta sẽ chứng minh \(t\geq 3\)
Thật vậy: \(t\geq 3\Leftrightarrow 2(x+y+1)^2\geq 6(x+y+xy)\)
\(\Leftrightarrow (x-y)^2+(x-1)^2+(y-1)^2\geq 0\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)
Ta có: \(A=\dfrac{8t}{9}+\left(\dfrac{t}{9}+\dfrac{1}{t}\right)\geq \dfrac{24}{9}+\dfrac{2}{3}=\dfrac{10}{3}\)
Dấu "=" xảy ra khi \(t=3\Leftrightarrow x=y=1\)
3)
x^2 = 2x + \(\sqrt{2x-1}\) \(\Rightarrow\) x^2 = ( 2x -1 ) + \(\sqrt{2x-1}\) +1
\(\Rightarrow\) x^2 = (\(\sqrt{2x-1}\) + 1)^2 chuyển vế rồi phân tích thành nhân tử là ok