Cho tam giác ABC, có đường cao AH, từ H kẻ HD vuông AB, HE vuông AC. Chứng minh: BD căn 3CH + CE căn 3BH = căn BC^3 - BH^3 - CH^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔBAC vuông tại B có BH là đường cao
nên \(HA\cdot HC=BH^2\left(1\right)\)
Xét ΔBHC vuông tại H có HE là đường cao
nên \(BE\cdot BC=BH^2\left(2\right)\)
Từ (1) và (2) suy ra \(HA\cdot HC=BE\cdot BC\)
Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(BC^2=AB^2+AC^2=25+75=100\Rightarrow BC=10\)cm
* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{25}+\frac{1}{75}=\frac{100}{1875}\)
\(\Rightarrow100AH^2=1875\Leftrightarrow AH^2=\frac{75}{4}\Leftrightarrow AH=\frac{5\sqrt{3}}{2}\)cm
* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{25}{10}=\frac{5}{2}\)cm
* Áp dụng hệ thức \(AC^2=CH.BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{75}{10}=\frac{15}{2}\)cm
Ta có: \(\dfrac{AB}{AC}=\sqrt{3}\)
\(\Leftrightarrow HB=3\cdot HC\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow3\cdot HC=12\)
hay HC=4(cm)
\(\Leftrightarrow HB=\dfrac{4}{3}\left(cm\right)\)
\(\Leftrightarrow BC=\dfrac{16}{3}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\dfrac{8}{3}\left(cm\right)\\AC=\dfrac{8\sqrt{3}}{3}\left(cm\right)\end{matrix}\right.\)
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H co
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm