K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2019

A, 

xét \(\Delta ABD\)và \(\Delta ACD\)

CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)

SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C)  (1)

=> \(\widehat{BDA}\)=\(\widehat{CDA}\)

MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180

=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90

B,  (1) => BC=DC=1/2 BC=8

ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ

\(AB^2=AD^2+BD^2\)

=> AD^2=36

=>AD=6

9 tháng 4 2019

c, vì M là trọng tâm nên AM=2/3AD=4

d

9 tháng 8 2017
Cho Δ ABC vuông tại A. AB = 5cm, BC = 13cm. Ba đường trung tuyến AM, BN, CE giao nhau tại O
a/ Tính độ dài các cạnh AM, BN, CE?
b/ Tính diện tích Δ ABC

Dưới đây là ý a tớ đã làm ( bạn tự vẽ hình nhé )
a/ Xét ΔABC có góc A=90°
mà AM là trung tuyến của ΔABC
=> AM=BC/2=13/2=6,5(cm)
Xét ΔABC có góc A = 90°
Áp dụng đ/lí Py-ta-go có:
BC^2=AE^2+AC^2
=> AC^2=BC^2-AE^2
AC^2=13^2-5^2=144 => AC=√144=12(cm)
Xét ΔABN có góc A=90°
mà BN là trung tuyến của Δ ABC
=> BN=AC/2=12/2=6(cm)
BN^2=AB^2+AN^2
BN^2=5^2+6^2
BN^2=61 => BN= √61(cm)
Xét ΔACE có góc A=90 °
AC=12cm, AE=AB/2=2,5(cm) [CE là trung tuyến]
Áp dụng đ/lí Py-ta-go có:
CE^2=AC^2+AE^2
CE^2=12^2+2,5^2
CE^2= 144 + 6,25
=> CE^2=150,25 => CE=√ 150,25 (cm)
9 tháng 8 2017

Thanks you ban

13 tháng 4 2016

a) Áp dụng định lí Pi - ta - go, ta có:

102 - 52 = 75 => AC = \(\sqrt{75}\)

Còn mấy phần kia mình hơi vội nên chưa lm đc thông cảm nhé

cho tam giac ABC co 3 goc nhon(AB<AC). Cac duong cao AD,BE,CF cua tam giac cat nhau tai H. Goi I la trung diem cua AH.                                            a)Chung minh:BCEF va CDHE la tu giac noi tiep.                                              b)Chung minh:EB la phan giac cua goc FED va Tam giacBEF dong dang voi tam giacDHE.                                                                                                      c)Goi O la tam duong tron ngoai tiep tu giac BCEF. Chung...
Đọc tiếp

cho tam giac ABC co 3 goc nhon(AB<AC). Cac duong cao AD,BE,CF cua tam giac cat nhau tai H. Goi I la trung diem cua AH.                                            a)Chung minh:BCEF va CDHE la tu giac noi tiep.                                              b)Chung minh:EB la phan giac cua goc FED va Tam giacBEF dong dang voi tam giacDHE.                                                                                                      c)Goi O la tam duong tron ngoai tiep tu giac BCEF. Chung minh:IE la tiep tuyen cua duong tron (O).                                                                                  d)Ve CI cat (O) tai M (M khac C), EF cat AD tai K. Chung minh 3 diem B,K,M thang hang

...giai ho cau c,d

1

a: Xét tư giác BFEC có

góc BFC=góc BEC=90 độ

=>BFEC là tứ giác nội tiếp

Xét tứ giác CDHE có

góc CDH+góc CEH=180 độ

=>CDHE là tứ giác nội tiếp

b: CDHE là tứ giác nội tiếp

=>gó BED=góc FCB

góc FEH=góc BAD

mà góc FCB=góc BAD

nên góc BED=góc FEB

=>EB là phân giác của góc FED

c: góc IEO=góc IEH+góc OEH

=góc IHE+góc OBE

=góc BHD+góc CBH=90 độ

=>IE là tiếp tuyến của (O)

4 tháng 11 2018

O la giao diem cua AM va EF nha lam on jup minh lam cau 3voi

4 tháng 11 2018

lam on jup minh voi cau tinh AH minh chua biet lam

4 tháng 11 2018

bn tự vẽ hình nhé

1.

xét tứ giác AEMF có: AE//MF,EM//AF

=>AEMF là hình bình hành

mà Â=900

=>AEMF là hình chữ nhật

2.a) xét /\ AMF và /\ CMF có

AM=MC( AM là đg trung tuyến)

AM là cạch chung

góc AFM=CFM=900

=>...(ch-gn)

=>AF=FC

(làm tương tự vói /\ BME và AME)

=>BE=EA

xét tam giác ABC có EF là đg trung bình

=>EF//BC

mà H thuộc BC và O thuộc EF nên OF//HC

xét tứ giác OHCF có OF//HC(CMT)

=>OHCF là hình thang

(giờ mk buồn ngủ quá nên hẹn mai giải tiếp nhé,hoặc bn có thể vào vietjack.com)

9 tháng 4 2016

a. Áp dụng định lí Pitago vào tam giác vuông ABC ta có: AB2 +AC2 = BC2 --> 92 +122 =BC2 -->BC2 = 225 -->BC =15 

b. Xét tam giác ABD và tam giác MBD có :

góc BAD = góc BMD = 90 độ

cạnh BD chung

góc ABD = góc MBD ( BD là phân giác ABM )

--> tam giác ABD = MBD ( cạnh huyền góc nhọn )

c. Xét tam giác BEC có : AC vuông góc BE

                                     ME vuông góc BC

                                     AC cắt ME tại D

-----> D là trực tâm --> BD vuông góc CE hay BD là đường cao

Tam giác BEC có BD vừa là phân giác vừa là đường cao --> tam giác BEC cân