Lop 7 cho tam ABC vuong tai A co AB=6, AC=8 Goi AD,BE,CF la 3 duong trung tuyen giao tai O Tinh S cua tam giac ABD,BOC,AOE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
a/ Tính độ dài các cạnh AM, BN, CE?
b/ Tính diện tích Δ ABC
Dưới đây là ý a tớ đã làm ( bạn tự vẽ hình nhé )
a/ Xét ΔABC có góc A=90°
mà AM là trung tuyến của ΔABC
=> AM=BC/2=13/2=6,5(cm)
Xét ΔABC có góc A = 90°
Áp dụng đ/lí Py-ta-go có:
BC^2=AE^2+AC^2
=> AC^2=BC^2-AE^2
AC^2=13^2-5^2=144 => AC=√144=12(cm)
Xét ΔABN có góc A=90°
mà BN là trung tuyến của Δ ABC
=> BN=AC/2=12/2=6(cm)
BN^2=AB^2+AN^2
BN^2=5^2+6^2
BN^2=61 => BN= √61(cm)
Xét ΔACE có góc A=90 °
AC=12cm, AE=AB/2=2,5(cm) [CE là trung tuyến]
Áp dụng đ/lí Py-ta-go có:
CE^2=AC^2+AE^2
CE^2=12^2+2,5^2
CE^2= 144 + 6,25
=> CE^2=150,25 => CE=√ 150,25 (cm)
a) Áp dụng định lí Pi - ta - go, ta có:
102 - 52 = 75 => AC = \(\sqrt{75}\)
Còn mấy phần kia mình hơi vội nên chưa lm đc thông cảm nhé
a: Xét tư giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC là tứ giác nội tiếp
Xét tứ giác CDHE có
góc CDH+góc CEH=180 độ
=>CDHE là tứ giác nội tiếp
b: CDHE là tứ giác nội tiếp
=>gó BED=góc FCB
góc FEH=góc BAD
mà góc FCB=góc BAD
nên góc BED=góc FEB
=>EB là phân giác của góc FED
c: góc IEO=góc IEH+góc OEH
=góc IHE+góc OBE
=góc BHD+góc CBH=90 độ
=>IE là tiếp tuyến của (O)
O la giao diem cua AM va EF nha lam on jup minh lam cau 3voi
bn tự vẽ hình nhé
1.
xét tứ giác AEMF có: AE//MF,EM//AF
=>AEMF là hình bình hành
mà Â=900
=>AEMF là hình chữ nhật
2.a) xét /\ AMF và /\ CMF có
AM=MC( AM là đg trung tuyến)
AM là cạch chung
góc AFM=CFM=900
=>...(ch-gn)
=>AF=FC
(làm tương tự vói /\ BME và AME)
=>BE=EA
xét tam giác ABC có EF là đg trung bình
=>EF//BC
mà H thuộc BC và O thuộc EF nên OF//HC
xét tứ giác OHCF có OF//HC(CMT)
=>OHCF là hình thang
(giờ mk buồn ngủ quá nên hẹn mai giải tiếp nhé,hoặc bn có thể vào vietjack.com)
a. Áp dụng định lí Pitago vào tam giác vuông ABC ta có: AB2 +AC2 = BC2 --> 92 +122 =BC2 -->BC2 = 225 -->BC =15
b. Xét tam giác ABD và tam giác MBD có :
góc BAD = góc BMD = 90 độ
cạnh BD chung
góc ABD = góc MBD ( BD là phân giác ABM )
--> tam giác ABD = MBD ( cạnh huyền góc nhọn )
c. Xét tam giác BEC có : AC vuông góc BE
ME vuông góc BC
AC cắt ME tại D
-----> D là trực tâm --> BD vuông góc CE hay BD là đường cao
Tam giác BEC có BD vừa là phân giác vừa là đường cao --> tam giác BEC cân