BT1:Cho a,b,c là các số thực. Chứng minh rằng:
a2+b2+c2>=ab+bc+ac+\(\dfrac{\left(a+b\right)^2}{26}+\dfrac{\left(b-c\right)^2}{6}+\dfrac{\left(c-a\right)^2}{2009}\)
BT2:Cho a,b là các số dương thỏa mãn \(\dfrac{a}{1+a}+\dfrac{2b}{1+b}=1\). Chứng minh rằng ab2=<1/8
MÌNH ĐANG CẦN GẤP. GIÚP MÌNH VỚI
Nội suy Sửa đề làm cho bạn
Bài 1:
\(a^2+b^2+c^2\ge ab+bc+ac+\dfrac{\left(a-b\right)^2}{26}+\dfrac{\left(b-c\right)^2}{2}+\dfrac{\left(c-a\right)^2}{2009}\)Nhân 2 chuyển Vế
\(2a^2+2b^2+2c^2-2ab-2bc-2ac-\left[\dfrac{\left(a-b\right)^2}{13}+\dfrac{\left(b-c\right)^2}{3}+\dfrac{2\left(c-a\right)^2}{2009}\right]\ge0\)Ghép Bình phướng
\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2-\left[\dfrac{\left(a-b\right)^2}{13}+\dfrac{\left(b-c\right)^2}{3}+\dfrac{2.\left(c-a\right)^2}{2009}\right]\ge0\)Ghép nhân tử
\(\left[\left(a-b\right)^2\left(1-\dfrac{1}{13}\right)+\left(b-c\right)^2\left(1-\dfrac{1}{3}\right)+\left(c-a\right)^2\left(1-\dfrac{2}{2009}\right)\right]\ge0\)
Thu gọn có thể không cần
\(\left[\left(a-b\right)^2\left(\dfrac{12}{13}\right)+\left(b-c\right)^2\left(\dfrac{2}{3}\right)+\left(c-a\right)^2\left(\dfrac{207}{2009}\right)\right]\ge0\)VT là tổng 3 số không âm
Đẳng thức khi a=b=c
=> dpcm
a=b=c sai rồi --> gấp thì đề cũng cho chuẩn