K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔCBA vuông tại C có CH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}CH^2=HA\cdot HB\\CA^2=HA\cdot AB\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}CH=6\left(cm\right)\\CA=2\sqrt{13}\left(cm\right)\end{matrix}\right.\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔCHA vuông tại H có HE là đường cao ứng với cạnh huyền CA, ta được:

\(CE\cdot CA=CH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔCHB vuông tại H có HF là đường cao ứng với cạnh huyền CB, ta được:

\(CF\cdot CB=CH^2\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(CE\cdot CA=CF\cdot CB\)

hay \(\dfrac{CE}{CB}=\dfrac{CF}{CA}\)

Xét ΔCEF vuông tại C và ΔCBA vuông tại A có 

\(\dfrac{CE}{CB}=\dfrac{CF}{CA}\)

Do đó: ΔCEF\(\sim\)ΔCBA

21 tháng 12 2021

a: BC=5cm

AH=2,4cm

BH=1,8cm

CH=3,2cm

a: BC=10cm

AH=4,8cm

5 tháng 11 2021

mình cần câu b với c ạ 

 

d) Xét ΔHEB vuông tại E và ΔHFC vuông tại F có 

HB=HC(ΔABH=ΔACH)

\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

Do đó: ΔHEB=ΔHFC(Cạnh huyền-góc nhọn)

Suy ra: HE=HF(Hai cạnh tương ứng)

24 tháng 3 2021

a. Ta có : \(\widehat{B}\)=30 MÀ ΔABC CÂN TẠI A

\(\widehat{C}\)=30

MÀ \(\widehat{A}+\widehat{B}+\widehat{C}\)=180

\(\widehat{A}\) + 30+30=180

\(\widehat{A}\)=180-30-30

\(\widehat{A}\)=120

xÉT ΔAHB vuông tại H, ΔAHC vuông tại H

CÓ : AB = AC (TAM GIÁC ABC CÂN TẠI A)

\(\widehat{B}=\widehat{C}\)(TAM GIÁC ABC CÂN TẠI A)

⇒ΔAHB = ΔAHC (C.HUYỀN-G.NHỌN)

\(\widehat{BAH}=\widehat{CAH}\)

C.TRONG TAM GIÁC AHC VUÔNG TẠI H 

\(AC^2=HC^2+AH^2\)

\(AC^2\)=\(4^2\)+\(3^2\)

\(AC^2\)=16+9 

AC=\(\sqrt{25}\)=5CM

D.XÉT ΔAHE VUÔNG TẠI E, ΔAHF VUÔNG TẠI F 

CÓ: AH : CẠNH HUYỀN CHUNG

\(\widehat{BAH}=\widehat{CAH}\) (ΔAHB = ΔAHC)

⇒ΔAHE=ΔAHF( C.HUYỀN-G.NHỌN)

⇒HE=HF (2 CẠNH TƯƠNG ỨNG)

b) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)

11 tháng 5 2022

a, Xét Δ ABC, có :

\(AB^2+AC^2=BC^2\) (định lí Py - ta - go)

=> \(3^2+4^2=BC^2\)

=> \(25=BC^2\)

=> BC = 5 (cm)

Xét Δ ABC vuông tại A, theo hệ thức lượng có :

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

=> \(\dfrac{1}{AH^2}=\dfrac{1}{3^2}+\dfrac{1}{4^2}\)

=> AH = 2,4 cm

b, Xét Δ ABD, có :

HD = HB (gt)

AH là đường cao

=> Δ ABD cân

17 tháng 5 2022

lol

b: Xét ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)