tìm số tự nhiên n đồng thời thỏa mản 2 pt sau
a 4.(n+1)+3n-6<19 và b (n-3)^2-(n+2).(n-2)<hoặc= 1.5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) <=> 4n+4+3n-6 <19 <=> 7n<21 <=> n<3 (1)
b) <=> n^2 - 6n + 9 - n^2 +16 \(\le\)43
\(\Leftrightarrow\)-6n \(\le\)18 <=> n > 3 (2)
Từ 1 và 2 => n=\(\Phi\)
a) 4(n + 1) + 3n - 6 < 19
<=> 4n + 4 + 3n - 6 < 19
<=> 7n - 2 < 19
<=> 7n - 2 - 19 < 0
<=> 7n - 21 < 0
<=> n < 3
b) (n - 3)^2 - (n + 4)(n - 4) ≤ 43
<=> n^2 - 6n + 9 - n^2 + 16 ≤ 43
<=> -6n + 25 ≤ 43
<=> -6n ≤ 18
<=> n ≥ -3
Vì n < 3 và n ≥ -3 => -3 ≤ n ≤ 3.
Vậy S = {x ∈ R ; -3 ≤ n ≤ 3}
Bài 2:
A = (a+b)(1/a+1/b)
Có: \(a+b\ge2\sqrt{ab}\)
\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\)
=> \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}.2\sqrt{\frac{1}{ab}}=4\)
=> ĐPCM
1.b)
Pt (1) : 4(n + 1) + 3n - 6 < 19
<=> 4n + 4 + 3n - 6 < 19
<=> 7n - 2 < 19
<=> 7n - 2 - 19 < 0
<=> 7n - 21 < 0
<=> n < 3
Pt (2) : (n - 3)^2 - (n + 4)(n - 4) ≤ 43
<=> n^2 - 6n + 9 - n^2 + 16 ≤ 43
<=> -6n + 25 ≤ 43
<=> -6n ≤ 18
<=> n ≥ -3
Vì n < 3 và n ≥ -3 => -3 ≤ n ≤ 3.
Vậy S = {x ∈ R ; -3 ≤ n ≤ 3}
Bài 2: (1) <=> \(4\left(n+1\right)+3n-6< 19\)
<=> \(4n+4+3n-6< 19\)
<=> \(7n-2< 19\)
<=> \(7n< 21\) <=> \(n< 3\) (*)
(2) <=> \(\left(n-3\right)^2-\left(n+4\right)\left(n-4\right)\le43\)
<=> \(n^2-6n+9-n^2+16\le43\)
<=> \(-6n+25\le43\) <=> \(-6n\le18\Leftrightarrow n\le-3\) (**)
Từ (*) và (**) => \(n\le3\) thì mới tìm được mà thỏa mãn 2 phương trình đã cho. Nhưng đề yêu cầu tìm n \(\in\) N nên k có n thỏa mãn
#)Giải :
Vì bội chung của 3 và 4 chia hết cho 3 và 4 => số đó chia hết cho 12
=> Ta tìm được : \(B\left(12\right)=\left\{12;24;36;48;60;72;84;96;108;...\right\}\)
Rùi tự xét típ nha ^^
Ta có:
\(n\in BC\left(3,4\right)\Rightarrow n⋮3,4\)
Vì \(n⋮4\) nên 2 chữ số tận cùng của n phải chia hết cho 4 (dấu hiệu chia hết cho 4) mà các chữ số của n chỉ có thể là 4 hoặc 6\(\Rightarrow\)2 chữ số tận cùng của n là 44 hoặc 64
TH1: 2 chữ số tận cùng của là 44
Vì \(n⋮3\Rightarrow\) tổng các chữ số của n phải chia hết cho 3
Vì các chữ số của n chỉ có thể là 4 hoặc 6\(\Rightarrow\)các số đó là 4644 và 6444 (do có cả số 4 và 6 và \(4+6+4+4,6+4+4+4⋮3\))
Mà đề yêu cầu là tìm số nhỏ nhất\(\Rightarrow\)số đó là 4644
TH2: 2 chữ số tận cùng của là 64
Vì \(n⋮3\Rightarrow\) tổng các chữ số của n phải chia hết cho 3
Vì các chữ số của n chỉ có thể là 4 hoặc 6\(\Rightarrow\)số đó là 4464 (do có cả số 4 và 6 và \(4+4+6+4⋮3\))
Mà \(4464\left(TH2\right)< 4644\left(TH1\right)\Rightarrow\)số đó là 4464 (do đề yêu cầu tìm số nhỏ nhất)
15.B
16.C
17.A
18.D
19.A
còn câu 20,21 mình sợ mình làm sai nên k ghi đáp án sorry bạn nha:(
Vì n là số tự nhiên có 2 chữ số thì \(10\le n\le99\)
=>\(21\le2n+1\le199\)
Vì 2n+1 là số chính phương
=>2n+1=(16;25;36;499;64;81;100;121;169)
n=(12;24;40;60;84)
=>3n+1=(37;73;121;181;253)
Mà 3n+1 là số chính phương
=>3n+1=121
=>n=40
\(\left\{{}\begin{matrix}4\left(n+1\right)+3n-6< 19\\\left(n-3\right)^2-\left(n+2\right)\left(n-2\right)< =\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4n+4+3n-6< 19\\n^2-6n+9-n^2+4< =\dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7n< 21\\-6n+13< =\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n< 3\\-6n< =-\dfrac{23}{2}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{23}{12}< n< 3\)
mà n là số tự nhiên
nên n=2