Tìm các số nguyên dương x, y, z thỏa mãn 1/x + 1/y + 1/z = 3/5 (giúp mình với ạ, mình cảm ơn)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+x\ge2\sqrt{x^4}=2x^2\)
Tương tự:
\(y^3+y\ge2y^2\)
\(z^3+z\ge2z^2\)
Cộng vế:
\(x^3+y^3+z^3+x+y+z\ge2\left(x^2+y^2+z^2\right)=6\)
Dấu "=" xảy ra khi \(x=y=z=1\)
`(x-1)^2>=0`
`|3y-1|>=0`
`|z+2|>=0`
`=>(x-1)^2+|3y-1|+|z+2|>=0`
Mà đề bài cho =0
`=>{(x-1=0),(3y-1=0),(z+2=0):}`
`=>{(x=1),(y=1/3),(z=-2):}`
Vậy `x=1` và `y=1/3` và `z=-2`
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\left|3y-1\right|\ge0\forall y\)
\(\left|z+2\right|\ge0\forall z\)
Do đó: \(\left(x-1\right)^2+\left|3y-1\right|+\left|z+2\right|\ge0\forall x,y,z\)
Dấu '=' xảy ra khi \(\left(x,y,z\right)=\left(1;\dfrac{1}{3};-2\right)\)
\(x^3+y^3=\left(x+y\right)^2\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2-x-y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\left(1\right)\\x^2-xy+y^2-x-y=0\left(2\right)\end{matrix}\right.\)
(1) thì tự làm nốt
\(\left(2\right)\Leftrightarrow x^2-x\left(y+1\right)+y^2-y=0\)
Xem phương trình ẩn x. Để phương trình có nghiệm thì:
\(\Delta_x=\left(y+1\right)^2-4\left(y^2-y\right)\ge0\)
\(\Leftrightarrow0\le y\le2\)
Làm nốt
lâu rồi ko làm xem đúng ko nhé
x=5
y=5
z=5
x=5, y=15, z=3