Cho a,b,c. Thỏa mãn: \(\dfrac{a}{2002}=\dfrac{b}{2003}=\dfrac{c}{2005}\)
CMR: \(4\left(a-b\right)\left(b-c\right)=\left(a-c\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài hình như bị sai em, thay điểm rơi ko thỏa mãn
Biểu thức là \(a+b+\sqrt{2\left(a+c\right)}\) mới đúng
Bài 1:
Áp dụng t.c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\\ =\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a^3}{b^3}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(dpcm\right)\)
Bài này đã có ở đây:
Cho abc=1CMR\(\dfrac{a+3}{\left(a+1\right)^2}+\dfrac{b+3}{\left(b+1\right)^2}+\dfrac{c+3}{\left(c+1\right)^2}\ge3\) - Hoc24
giả sử a/2002 = b/2003 = c/2004 = k
=> a = 2002k ; b=2003k và c=2004k
=> 4(a-b)(b-c) = 4(2002k - 2003k)(2003k - 2004k)
=> 2(a-b)(b-c) = 4k^2 (1)
Ta có (c-a)^2 = (2004k - 2002k)^2 = 4k^2 (2)
từ (1) và (2) ta có 2(a-b)(b-c) = (c-a)^2
mk ko hiểu chỗ từ dòng số 3 đến dòng số 4 cho lắm .
Giảng cho mk dc ko ?