Chứng minh 10^2008 + 125 chia hết cho 45
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì 102008 có tổng các chữ số bằng 1 mà 125 có tổng các chữ số =8 nên khi ta thêm 1 sẽ được 9 \(⋮\)9
mà 125 đã có tận cùng là 5 nên125\(⋮\)5
\(\Rightarrow\)A\(⋮\)45
Dễ thấy 102008 \(⋮\) 5 và 45 \(⋮\) 5 nên A = 102008 + 45 \(⋮\) 5 (1).
Ta có: A = 100...0 (2008 chữ số 0) + 125.
Tổng các chữ số của tổng A là: 1 + 0 + 0 + ... + 0 + 1 + 2 + 5 = 9 \(⋮\) 9 nên A \(⋮\) 9 (2).
Từ (1) và (2) \(\Rightarrow A⋮\) 5 và 9 \(\Rightarrow A⋮BCNN\left(5;9\right)=45\left(đpcm\right)\)
câu a
có 102008 + 125 = 1000...000125 (2005 số 0)
có 1 + 0 + 0 + 0 +...+ 1 + 2 + 5 = 9
=> 1000...000125 (2005 số 0) chia hết cho 9
mà 1000...000125 (2005 số 0) chia hết cho 5
5 và 9 nguyên tố cùng nhau
=> 1000...000125 (2005 số 0) chia hết cho 45
=> 102008 + 125 chia hết cho 45
câu b
52008 + 52007 + 52006 = 52006(52 + 5 + 1) = 52006 . 31
=> 52006 . 31 chia hết 31
=> 52008 + 52007 + 52006 chia hết 31
2 câu kia để mình xem lại 1 chút nhé, có j đó ko đựoc đúng, hoặc có thể là mình làm sai
chúc may mắn
để 10^2008+125 chia hết cho 45
=>10^2008+125 chia hết cho 9 và 5
vì 10^2008 chia hết cho 5,125 chia hết cho 5
=>10^2008 +125 chia hết cho 5 (1)
ta có :10^2008+125=100....00+125=1...0125
vì 1+1+2+5 =9 chia hết cho 9 =>10^2008 +125 chia hết cho 9 (2)
từ (1) và (2) =>10^2008 +125 chia hết cho 45 (đpcm)
101983+125
101983=101973.1010
=Vì 1010=10000000000/45 nên 101973 .1010/ hay 101983/45
125/45
=>101983+125/45
(dấu"/" của mik nghĩa là chia hết)
Ta có :
\(45=BCNN\left(5,9\right)\) và \(ƯCLN\left(5,9\right)=1\)
Ta có :
\(10^{2008}+125=\left(100......0\right)+125=\left(1000.....125\right)\)
Mà \(10^{2008}+125\) có chữ số tận cùng là 5 \(\Leftrightarrow10^{2008}+125⋮5\left(1\right)\)
\(10^{2008}+125\) có tổng các chữ số chia hết cho 9 \(\Leftrightarrow10^{2008}+125⋮9\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\left(10^{2008}+125\right)⋮5,9\)
\(\Leftrightarrow10^{2008}+125⋮45\left(đpcm\right)\)
Ta có: \(45=5.9\Rightarrowđể10^{2008}+125\) thì
\(\left(10^{2008}+125\right)⋮5;9\)
Vì \(125⋮5\) bởi có tận cùng là 5
Mà \(10^{2008}\) luôn có tận cùng là 0 nên chia hết cho 5.
\(\Rightarrow\left(10^{2008}+125\right)⋮5\) (1)
Và \(\left(125+1\right)⋮9\) mà \(10^{2008}:9\) dư 1
\(\Rightarrow\left(10^{2008}+125\right)⋮9\) (2)
Từ (1) và (2) suy ra \(\left(10^{2008}+125\right)⋮5;9\Rightarrow\left(10^{2008}+125\right)⋮45\)