Với x>0, tìm GTNN của A=\(\dfrac{\left(x+16\right)\left(x+9\right)}{x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x+13+\dfrac{36}{x}=\left(x+\dfrac{36}{x}\right)+13\ge2\sqrt{\dfrac{x.36}{x}}+13=12+13=25.\text{ Dấu }"="\text{ xảy ra khi: }x=\dfrac{36}{x}\text{ hay: }x=6\)
Áp dụng BĐT Cauchy :
\(\frac{\left(x+16\right)\left(x+9\right)}{x}=\frac{x^2+25x+144}{x}=x+\frac{144}{x}+25\ge2\sqrt{x.\frac{144}{x}}+25=49\)
Đẳng thức xảy ra khi \(x=12\)
Vậy ...............................................
Cách làm của bạn Hoàng Lê Bảo Ngọc nha bạn
Mình chắc chắn luôn
Thank you
a) \(f(x)\geq 2\sqrt{x^2.\frac{16}{x^2}}=2\sqrt{16}=2.4=8\)
Dấu "=" xảy ra khi và chỉ khi \(x^2=\frac{16}{x^2}\)
\(\Leftrightarrow x=2\)
Vậy GTNN của \(f(x)\) bằng 8 khi x=2
b) \(f(x)=\frac{1-x+x}{x}+\frac{2-2x+2x}{1-x}\)
\(f(x)=\frac{1-x}{x}+\frac{2x}{1-x}+3\)
\(f(x)\geq 2\sqrt{\frac{1-x}{x}.\frac{2x}{1-x}}+3=2\sqrt{2}+3\)
Dấu "=" xảy ra khi và chỉ khi \(\frac{1-x}{x}=\frac{2x}{1-x}\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTNN của \(f(x)\) bằng \(2\sqrt{2} +3\) khi \(x=\frac{1}{2}\)
BĐT AM-GM để xem à
\(A=\dfrac{\left(x+16\right)\left(x+9\right)}{x}=\dfrac{x^2+25x+144}{x}=x+25+\dfrac{144}{x}\)
Áp dụng BĐT AM-GM cho 2 số không âm
\(x+\dfrac{144}{x}\ge2\sqrt{\dfrac{x.144}{x}}\)
\(x+\dfrac{144}{x}\ge24\)
\(x+\dfrac{144}{x}+25\ge49\)
\(A\ge49\)
\(Min_A=49\)
\(A=\dfrac{x^2+25x+\left(3.4\right)^2}{x}=\dfrac{x^2+\left[49x-24x\right]+\left(3.4\right)^2}{x}=\dfrac{x^2-24x+\left(3.4\right)^2+49x}{x}\)\(A=\dfrac{\left(x-12\right)^2}{x}+49\ge49\)
\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)
\(y_{min}=-3\) khi \(x=1\)
\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)
\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)
\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)
\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)
1. Ta có : \(A=\frac{\left(x+4\right)\left(x+9\right)}{x}=\frac{x^2+13x+36}{x}=x+\frac{36}{x}+13\)
Áp dụng bđt Cauchy : \(x+\frac{36}{x}\ge2\sqrt{x.\frac{36}{x}}=12\)
\(\Rightarrow A\ge25\)
Vậy Min A = 25 \(\Leftrightarrow\begin{cases}x>0\\x=\frac{36}{x}\end{cases}\) \(\Leftrightarrow x=6\)
2. \(B=\frac{\left(x+100\right)^2}{x}=\frac{x^2+200x+100^2}{x}=x+\frac{100^2}{x}+200\)
Áp dụng bđt Cauchy : \(x+\frac{100^2}{x}\ge2\sqrt{x.\frac{100^2}{x}}=200\)
\(\Rightarrow B\ge400\)
Vậy Min B = 400 \(\Leftrightarrow\begin{cases}x>0\\x=\frac{100^2}{x}\end{cases}\) \(\Leftrightarrow x=100\)
\(A=\dfrac{\left(x+16\right)\left(x+9\right)}{x}\)
\(A=\dfrac{x^2+25x+144}{x}\)
Vì x>0 nên ta được quyền rút gọn
\(A=x+25+\dfrac{144}{x}\)
Vì x>0 nên \(\dfrac{144}{x}>0\)
Áp dụng BĐT AM-GM cho \(x+\dfrac{144}{x}\left(x>0\right)\), ta có:
\(\dfrac{x+\dfrac{144}{x}}{2}\ge\sqrt{\dfrac{x.144}{x}}\)
\(x+\dfrac{144}{x}\ge2.\sqrt{144}\)
\(x+\dfrac{144}{x}\ge24\)
\(A=x+\dfrac{144}{x}+25\ge24+25\)
Vậy MinA =49 khi \(x=\dfrac{144}{x}\)
\(x=\dfrac{144}{x}\)
\(x^2=144\)
\(x=\pm12\)
Chọn nghiệm x=12 ( x>0)
Vậy: MinA=49 khi x=12