cho 2 số a và b thỏa mãn a+b=38 và \(\dfrac{2a}{3}=\dfrac{5b}{2}\) vậy 3a-2b bằng ........
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\dfrac{2a}{3}=\dfrac{5b}{2}=\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{2}{5}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{2}{5}}=\dfrac{a+b}{\dfrac{3}{2}+\dfrac{2}{5}}=\dfrac{38}{\dfrac{19}{10}}=20\)
(vì a+b=38 )
Với \(\dfrac{a}{\dfrac{3}{2}}=20\) thì a=30
Với \(\dfrac{b}{\dfrac{2}{5}}=20\) thì b=8
Vậy b=8 ;a=30
`a^2+4ab-5b^2=0`
`<=>a^2+4ab+4b^2-9b^2=0`
`<=>(a+2b)^2-9b^2=0`
`<=>(a+2b-3b)(a+2b+3b)=0`
`<=>(a-b)(a+5b)=0`
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=-5b\end{matrix}\right.\)
`Q={2a-b}/{a-b}+{3a-2b}/{a+b}`
Với `a=b` `=>` giá trị vô nghĩa
Với `a=-5b`
`Q={-10b-b}/{-5b-b}+{-15b-2b}/{-5b+b}`
`Q={-11b}/{-6b}+{-17b}/{-4b}`
`Q=11/6+17/4`
`Q=73/12`
Áp dụng bđt Schwarz ta có:
\(P=\dfrac{a^4}{2ab+3ac}+\dfrac{b^4}{2cb+3ab}+\dfrac{c^4}{2ac+3bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(ab+bc+ca\right)}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(a^2+b^2+c^2\right)}=\dfrac{1}{5}\).
Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\dfrac{\sqrt{3}}{3}\).
\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\dfrac{1}{9}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{ab}{2b}\right)\)
\(=\dfrac{1}{9}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{a}{2}\right)\)
Tương tự:
\(\dfrac{bc}{b+3c+2a}\le\dfrac{1}{9}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}+\dfrac{b}{2}\right)\)
\(\dfrac{ac}{c+3a+2b}\le\dfrac{1}{9}\left(\dfrac{ac}{b+c}+\dfrac{ac}{a+b}+\dfrac{c}{2}\right)\)
Cộng vế:
\(P\le\dfrac{1}{9}\left(\dfrac{bc+ac}{a+b}+\dfrac{bc+ab}{a+c}+\dfrac{ab+ac}{b+c}+\dfrac{a+b+c}{2}\right)\)
\(P\le\dfrac{1}{9}.\left(a+b+c+\dfrac{a+b+c}{2}\right)=\dfrac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(\frac{2a}{a+b}+\frac{b}{a-b}=2< =>2\left(a-b\right)a+b\left(a+b\right)=2\left(a-b\right)\left(a+b\right).\)
\(< =>2a^2-2ab+ab+b^2=2a^2-2b^2\)
\(< =>3b^2-ab=0< =>b\left(3b-a\right)=0=>\orbr{\begin{cases}b=0\\3b-a=0\end{cases}}\)\(< =>\orbr{\begin{cases}b=0\\a=3b\end{cases}=>\orbr{\begin{cases}A=3\\A=1\end{cases}}}\)
Ta có :\(\dfrac{2a}{3}=\dfrac{5b}{2}\Rightarrow\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{2}{5}}\) và \(a+b=38\)
Áp dụng t/c của dãy tỉ số = nhau ta có:
\(\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{2}{5}}=\dfrac{a+b}{\dfrac{3}{2}+\dfrac{2}{5}}=\dfrac{38}{\dfrac{19}{10}}=20\)
\(\Rightarrow\left[{}\begin{matrix}a=20.\dfrac{3}{2}\\b=20.\dfrac{2}{5}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=30\\b=8\end{matrix}\right.\)
\(\Rightarrow3a-2b=3.30-2.8=74\)
Vậy...........................
Ta có : \(\dfrac{2a}{3}=\dfrac{5b}{2}\)
\(\Rightarrow4a=15b\\ \Rightarrow\dfrac{a}{15}=\dfrac{b}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\dfrac{a}{15}=\dfrac{b}{4}=\dfrac{a+b}{15+4}=\dfrac{38}{19}=2\\ \Rightarrow\left\{{}\begin{matrix}a=2\cdot15=30\\b=2\cdot4=8\end{matrix}\right.\)
Vậy \(3a-2b=3\cdot30-2\cdot8=90-16=74\)