tinh gia tri bieu thuc cua dai so x2y3 +xy tai x=1 va y=1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A = x + xy - y - x - 4xy - 3y
A = (x - x) + (xy - 4xy) - (y + 3y)
A = -3xy - 4y
Thay x = 0,5; y = -4 vào biểu thức A, ta được:
A = -3. 0,5. (-4) - 4.(-4) = 6 + 16 = 22
Vậy giá trị của biểu thức A = 22 tại x = 0,6; y = -4
Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)
\(=\left(x+y\right)^3=1^3=1\)
Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)
Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)
\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)
\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)
\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)
\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)
a: \(A=\dfrac{19}{5}xy^2\cdot x^3y=\dfrac{19}{5}x^4y^3\)
b: Hệ số là 19/5 và bậc là 7
c: Khi x=1 và y=2 thì \(A=\dfrac{19}{5}\cdot1^4\cdot2^3=\dfrac{19}{5}\cdot8=\dfrac{152}{5}\)
\(M=5.2.\left(-3\right)-10=3.\left(-3\right)\)
\(M=-30-10=-9\)
\(M=-40+9\)
\(M=-31\)
\(N=2\left(x^2-1\right)+3x-2\)
\(N=2.\left(1-1\right)+3.\left(-1\right)-2\)
\(N=-3-2\)
\(N=-5\)
_ Tại \(x=1;y=\dfrac{1}{2}\) thì:
\(1^2\left(\dfrac{1}{2}\right)^3+1.\dfrac{1}{2}\)
\(=\dfrac{1}{8}+\dfrac{1}{2}=\dfrac{5}{8}\)
Vậy giá trị của b/t đại số = \(\dfrac{5}{8}.\)
thay x=1; y= 1/2 vào biểu thức x^2y^3+xy ta được
1^2 x (1/2)^3 + 1 x 1/2
= 1 x 1/8 + 1/2
=1/8 + 4/8
=5/8
vậy giá trị của biểu thức x^2y^3+xy tại x=1; y=1/2 là:5/8