cho đường tròn (O) bán kính OA=6cm.Dây BC của đường tròn vuông góc với OA tại trung điểm của OA.Tính độ dài BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì Dây BC của đường tròn vuông góc với OA tại trung điểm của OA, gọi giao điểm của BC với OA tại trung điểm OA là M
\(=>OM=AM=\dfrac{1}{2}OA=\dfrac{1}{2}.3=1,5cm\)
\(=>OB=OC=R=3cm\)=>tam giác OBC cân tại O có OM là đường cao nên cũng là trung tuyến=>OB=OC
pytago cho tam giác BMO
\(=>OB=OC=\sqrt{OB^2-OM^2}=\sqrt{3^2-1,5^2}=\dfrac{3\sqrt{3}}{2}cm\)
\(=>BC=OB+OC=3\sqrt{3}cm\)
Gọi I là trung điểm của AB
Suy ra: IO = IA = (1/2).OA = 3/2
Ta có: BC ⊥ OA (gt)
Suy ra: góc (OIB) = 90 °
Áp dụng định lí Pitago vào tam giác vuông OBI ta có: O B 2 = B I 2 + I O 2
Suy ra: B I 2 = O B 2 - I O 2
Ta có: BI = CI (đường kính dây cung)
- Gọi I là giao điểm của BC và OC
( IO = IA = 1,5cm ) ( OB = OA = 3cm )
Áp dụng đlí Py - ta - go cho tam giác vuông IBO ( ^I = 90^o ) , ta có :
\(OB^2=IB^2+IO^2\)
\(3^2=IB^2+1,5^2\)
\(IB^2=3^2-1,5^2=9-2,25=6,75\)
\(\Rightarrow IB=\sqrt{6,75}\approx2,6\)
Mà \(OA\perp BC\Rightarrow IC=IB\)( t/c đường kính vuông với dây cung )
=> BC = 2 . IB = 2 . 2,6 = 5,2
Vậy : BC = 5,2cm
Ta có BC ⊥ OA ⇒ BE = EC
E là trung điểm của OA ⇒ OE = AE và OA=OB= 3cm
OE=\(\dfrac{OA}{2}\) =\(\dfrac{3}{2}\) = 1.5 cm
ΔHBO vuông tại E :
BE=\(\sqrt{OB^2-OE^2}\)
=\(\sqrt{3^2-1.5^2}\) =\(\dfrac{3\sqrt{3}}{2}\) cm
⇒ BC= 2BE
= 2. \(\dfrac{3\sqrt{3}}{2}\) = \(3\sqrt{3}\) cm
3 căn 3/5 nhé
nếu cần trình bày thì bn kẻ hình ra
rồi có ob=oa=oc
ad đl pytago cho tam giác vuoong nnhes
a: Xét (O) có
OI là một phần đường kính
BC là dây
OI\(\perp\)BC tại I
Do đó: I là trung điểm của BC
Xét tứ giác OBAC có
I là trung điểm của BC
I là trung điểm của OA
Do đó: OBAC là hình bình hành
mà OB=OC
nên OBAC là hình thoi
Xét ΔOAB có OA=OB=BA
nên ΔOAB đều
Ta có: OA = OB (bán kính)
OB = BA (tính chất hình thoi).
Nên OA = OB = BA => ΔAOB đều => ∠AOB = 60o
Trong tam giác OBE vuông tại B ta có:
BE = OB.tg∠AOB = OB.tg60o = R.√3
Gọi H là trung điểm OA \(\Rightarrow OH=\dfrac{1}{2}OA=3\left(cm\right)\)
Do BC vuông góc OA \(\Rightarrow\) H đồng thời là trung điểm BC
Áp dụng định lý Pitago cho tam giác vuông ACH:
\(CH=\sqrt{OC^2-OH^2}=\sqrt{6^2-3^2}=3\sqrt{3}\left(cm\right)\)
\(\Rightarrow BC=2CH=6\sqrt{3}\left(cm\right)\)