Rút gọn biểu thức B/ (x+5)^3-x^3-125 lời giải+đáp án
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x:\dfrac{4}{5}-\dfrac{1}{16}=\dfrac{3}{4}\)
\(x:\dfrac{4}{5}=\dfrac{3}{4}+\dfrac{1}{16}\)
\(x:\dfrac{4}{5}=\dfrac{12}{16}+\dfrac{1}{16}\)
\(x:\dfrac{4}{5}=\dfrac{13}{16}\)
\(x=\dfrac{13}{16}\times\dfrac{4}{5}\)
\(x=\dfrac{13}{20}\)
Mk ra đáp án khác với đáp án ủa bn nên bn bào sai chứ j, thật ra cả 2 đáp án đều giống nhau, do biến đổi dấu nên trở thành 2 đáp án khác nhau thôi :V
để mk lm lại phần đáp án của mk ra giống đáp án của bn nek :V
\(a,\)\(P=\dfrac{-x-1}{x-1}\)
\(\Rightarrow\dfrac{-\left(-x-1\right)}{-\left(x-1\right)}=\dfrac{x-1}{-x+1}=\dfrac{x-1}{1-x}\)
Còn câu b thì hôm qua bn ghi là \(x=\dfrac{1}{\sqrt{2}}\) chứ có pk là \(1\sqrt{2}\) đou >:V
\(b,\)Thay \(x=1\sqrt{2}\) vào \(P\) ta có :
\(P=\dfrac{x-1}{1-x}\)
\(P=\dfrac{1\sqrt{2}-1}{1-1\sqrt{2}}=3+2\sqrt{2}\)
\(C=\frac{x-y}{\sqrt{x}-\sqrt{y}}\cdot\frac{\sqrt{x^3}-\sqrt{y^3}}{x+\sqrt{xy}+y}-2\sqrt{y}\)
\(=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\cdot\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{x+\sqrt{xy}+y}-2\sqrt{y}\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\cdot\left(\sqrt{x}-\sqrt{y}\right)-2\sqrt{y}\)
\(=x-y-2\sqrt{y}\)
\(C=\frac{x-y}{\sqrt{x}-\sqrt{y}}.\frac{\sqrt{x^3}-\sqrt{y^3}}{x+\sqrt{xy}+y}-2\sqrt{y}.\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)\(.\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{x+\sqrt{xy}+y}\)\(-2\sqrt{y}\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)-2\sqrt{y}\)
\(=x-y-2\sqrt{y}\)
b: Ta có: \(\left(x+5\right)^3-x^3-125\)
\(=x^3+15x^2+75x+125-x^3-125\)
\(=15x^2+75x\)
1,(x+5)^3−x^3−125
=x^3+15x^2+75x+125−x^3−125
=15x(x+5)