K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2021

(1𝑦/3+3)^3

(𝑦/3+3)^3

(𝑦/3+3⋅3/3)^3

(𝑦+3⋅3/3)^3

(𝑦+9/3)^3

\(\left(\dfrac{1}{3}y+3\right)^3=\dfrac{1}{27}y^3+y^2+9y+27\)

\(\left(\dfrac{1}{3y+3}\right)^3=\dfrac{1}{\left(3y+3\right)^3}=\dfrac{1}{27y^3+81y^2+81y+27}\)

13 tháng 8 2021

\(\left(\dfrac{1}{3y+3}\right)^3=\dfrac{1^3}{\left(3y+3\right)^3}=\dfrac{1}{27\left(y^3+3y^2+3y+1\right)}\)

a: Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3\)

\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3\)

\(=6x^2y+2y^3\)

13 tháng 8 2021

\(\left(x+y\right)^3-\left(x-y\right)^3\)

\(=\left(x+y-x+y\right)^3+3\left(x+y\right)\left(x-y\right)\left(x+y-x+y\right)\)

\(=8y^3+6y\left(x^2-y^2\right)\)

\(=8y^3+6x^2y-6y^3\)

\(=2y^3+6x^2y\)

\(\left(x+y\right)^3=x^3+3x^2y+3xy^2-y^3\)

\(\left(x-y\right)^3=x^3-3x^2y+3xy^2-y^3\)

\(\left(2y-3\right)^3=8y^3-36y^2+54y-27\)

a: Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3\)

\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3\)

\(=6x^2y+2y^3\)

9 tháng 8 2021

Ta có:(a2+ab+b2)(a2-ab+b2)-(a4+b4)

    =   (a2+b2)2-a2b2-a4-b4=a4+2a2b2+b4-a2b2-a4-b4=a2b2

9 tháng 8 2021

Ta có:(a2+ab+b2)(a2-ab+b2)-(a4+b4)

    =   (a2+b2)2-a2b2-a4-b4=a4+2a2b2+b4-a2b2-a4-b4=a2b2

12 tháng 6 2021

a) $(3x+5)^2\\=(3x)^2+2.3x.5+5^2\\=9x^2+30x+25$

b) $(6x+\dfrac{1}{3})^2\\=(6x)^2+2.6x.\dfrac{1}{3}+(\dfrac{1}{3})^2\\=36x^2+4x+\dfrac{1}{9}$

c) $(5x-4y)^2\\=(5x)^2-2.5x.4y+(4y)^2\\=25x^2-40xy+16y^2$

d) $(5x-3)(5x+3)\\=(5x)^2-(3)^2\\=25x^2-9$

11 tháng 10 2021

a) \(=x^3+27-54-x^3=-27\)

b) \(=8x^3+y^3\)

AH
Akai Haruma
Giáo viên
24 tháng 6 2018

Lời giải:

\(A=(x+2y+3z)(x-2y+3z)\)

\(=[(x+3z)+2y][(x+3z)-2y]\)

\(=(x+3z)^2-(2y)^2\)

\(=x^2+9z^2+6xz-4y^2\)