Tìm các nguyên tố p sao cho p + 8 , p + 16 đều là các số nguyên tố
giúp mình với !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trường hợp 1: p=3
=> p+8=11 và p+16=19(nhận)
Trường hợp 2: p=3k+1
=>p+8=3k+9(loại)
Trường hợp 3: p=3k+2
=>p+16=3k+18(loại)
Tìm số nguyên tố p sao cho p+2; p+6; p+8; p+14 đều là các số nguyên tố
a) xét các số nguyên tố p như sau:
+) xét p=2 => p++2=4 ( là hợp số, loại)
+) xét p=3 => p+2=5 và p+4 =7 ( đều là số nguyên tố, chọn)
+) xét các số nguyên tố p lớn hơn 3. khi chia p cho 3 ta có 3 dạng: p=3k+1 hoặc p=3k+2. ( k\(\in\)N*)
- nếu p=3k+1 =>p+2=3k+1+2=3k+3 chia hết cho 3 va lớn hơn 3
=> p+2 là hợp số( trái với đề, loại)
- nếu p=3k+2 => p+4=3k+2+4=3k+6 chia hết cho 3 và lớn hơn 3.
=> p+4 là hợp ( trái với đề, loại)
vậy p=3.
b) ta xét các số nguyên tố p như sau:
+) xét p=2 =>p+14=16 ( là hợp số, loại)
+) xét p=3=> p+1=4 ( loại)
vì các số nguyên tố lớn hơn 3 đều là số lẻ. => p+1 luôn luôn chẵn( không phải số nguyên tố)
=> không tìm được số nguyên tố thỏa mãn.
vậy không tìm được số nguyên tố thỏa mãn.
k cho mình nha!
TL:
a)Để P+2;P+6; P+8 là số nguyên tố thì \(P=5\)
hc tốt
a ) p + 4
Hai số nguyên tố cách nhau 4 đơn vị là 3 và 7
=> p = 3 và p + 4 = 3 + 4 = 7
b ) p + 8
Hai số nguyên tố cách nhau 8 đơn vị là 3 và 11
=> p = 3 và p + 8 = 3 + 8 = 11
+Nếu p = 2 $\Rightarrow $ p + 2 = 4 (loại)
+Nếu p = 3 $\Rightarrow $ p + 6 = 9 (loại)
+Nếu p = 5 $\Rightarrow $ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)
+Nếu p > 5, ta có vì p là số nguyên tố nên $\Rightarrow $ p không chia hết cho 5 $\Rightarrow $ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4
-Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) $\vdots $ 5 (loại)
-Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) $\vdots $ 5 (loại)
-Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) $\vdots $ 5 (loại)
-Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) $\vdots $ 5 (loại)
$\Rightarrow $ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn
Vậy p = 5 là giá trị cần tìm
xét p = 2 => p + 8 = 2 + 8 = 10 (loại)
xét p = 3 => p + 8 = 3 + 8 = 11 (tm)
p + 16 = 3 + 16 = 19 (tm)
xét p là snt và p > 3 => p = 3k + 1 hoặc p = 3k + 2
với p = 3k + 1 => p + 8 = 3k + 1 + 8 = 3k + 9 = 3(k + 3) (loại)
với p = 3k + 2 => p + 16 = 3k + 2 + 16 = 3k + 18 = 3(k + 6) (loại)
vậy p = 3
cảm ơn @Victorique de Blois nhé