tren canh Ax cua goc nhon xay lay 2 diem B va D sao cho B nam giua A va D tren Ay lay C va E sao cho AB=AC va AD=AEa) chung minh tam giac ACD = tam giac ABE b) goi I la giao diem cua CD va BE so sanh goc IBD = goc ICE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi I là trung điểm AD
xét tam giác ACD có EI là đường trung bình nên IE song song CD và bằng 1/2 CD
xét trường hợp 1 EF cắt OA tại K ko thuộc tia Ox và cắt Oy tại Q thuộc Oy
có EI song song CD nên IEF=FQD
tương tự ta có IN là đường trung bình tam giác ABD nên IF song song AB và bằng 1/2 AB
AB=CD nên IE=IF
tam giác IEF cân tại I
ta có IF song song AB nên IF song song OK
INK= KNI
IMN = NQD = OQK
nên tam giác OKQ cân tại O có Ot là phân giác góc ngoài tại O nên Ot song song KQ hay song song MN
trường hợp còn lại làm tương tị
chỗ Ot là phân giác ngoài ban tự chứng minh song song đi dễ mà
Do At là phân giác của góc xAy
=>xAt=yAt
Xét TG(tam giác) ADB và TG CDA có:
AB=AC (GT)
xAt=yAt( chứng minh trên)
AD là cạnh chung
=>TG(tam giác) ADB = TG CDA (c.g.c)
Các cặp cạnh và góc tương ứng bằng nhau
a: Xét ΔBDC có
M là trung điểm của BC
E là trung điểm của DC
Do đó: ME là đường trung bình của ΔBDC
Suy ra: ME//BD và \(ME=\dfrac{BD}{2}\)
Xét ΔMAE có
D là trung điểm của AE
DI//ME
Do đó: I là trung điểm của AM
hay IA=IM
b: Xét ΔAME có
I là trung điểm của AM
D là trung điểm của AE
Do đó: ID là đường trung bình của ΔAME
Suy ra: \(ID=\dfrac{ME}{2}\)
\(\Leftrightarrow BD=4\cdot ID\)
Giải:
a) Xét \(\Delta ACD,\Delta ABE\) có:
AC = AB ( gt )
\(\widehat{A}\): góc chung
AD = AE ( gt )
\(\Rightarrow\Delta ACD=\Delta ABE\left(c-g-c\right)\) ( đpcm )
b) Vì \(\Delta ACD=\Delta ABE\)
\(\Rightarrow\widehat{B_1}=\widehat{C_1}\) ( góc t/ứng )
hay \(\widehat{IBD}=\widehat{ICE}\) ( đpcm )
Vậy...