Nếu phương trình 3x+5y=28 có nghiệm nguyên(x,y) thì x chia 5 có số dư là bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x2 + 5y = 28
=> 3x2 ≤ 28
=> x2 ≤ 9
=> x ≤ 3
Xét x = 0 => 5y = 28 ( loại )
Xét x = 1 => 3 + 5y = 28 => y = 5
Vì 1 chia 5 dư 1 => x0 chia 5 dư 1
pt: \(9.3^x+5y=28\Leftrightarrow10.3^x+5y-3^x=28\)
Ta thấy: \(10.3^x+5y⋮5\)Mà 28 chia 5 dư 3 => \(3^x\):5 dư 3
xét các chữ số tận cùng của \(3^x\)là: 1,3,7,9 => \(3^x\)phải có tận cùng là 3 => x=4k+1
đoạn sau tự giải quyết nốt nhé!
28 chia cho 5 dư 3, 5y chia hết cho 5 => 3x2 chia cho 5 dư 3
=> x2 chia cho 5 dư 1
=> x chia cho 5 dư 1 hoặc 4
Bạn tham khảo ở đây: Câu hỏi của Kaito Kid - Toán lớp 7 - Học toán với OnlineMath
1