K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2018

a) ta có: \(B=\frac{n}{n-3}=\frac{n-3+3}{n-3}=\frac{n-3}{n-3}+\frac{3}{n-3}\)

Để B là số nguyên

\(\Rightarrow\frac{3}{n-3}\in z\)

\(\Rightarrow3⋮n-3\Rightarrow n-3\inƯ_{\left(3\right)}=\left(3;-3;1;-1\right)\)

nếu n -3 = 3 => n= 6 (TM)

       n- 3 = - 3 => n = 0 (TM)

      n -3 = 1 => n = 4 (TM)

    n -3 = -1 => n = 2 (TM)

KL: \(n\in\left(6;0;4;2\right)\)

b) đề như z pải ko bn!

ta có: \(C=\frac{3n+5}{n+7}=\frac{3n+21-16}{n+7}=\frac{3.\left(n+7\right)-16}{n+7}=\frac{3.\left(n+7\right)}{n+7}-\frac{16}{n+7}=3-\frac{16}{n+7}\)

Để C là số nguyên

\(\Rightarrow\frac{16}{n+7}\in z\)

\(\Rightarrow16⋮n+7\Rightarrow n+7\inƯ_{\left(16\right)}=\left(16;-16;8;-8;4;-4;2;-2;1;-1\right)\)

rùi bn  thay giá trị của n +7 vào để tìm n nhé ! ( thay như phần a đó)

a: Trường hợp 1: p=2

=>p+11=13(nhận)

Trường hợp 2: p=2k+1

=>p+11=2k+12(loại)

b: Trường hợp 1: p=3

=>p+8=11 và p+10=13(nhận)

Trường hợp 2: p=3k+1

=>p+8=3k+9(loại)

Trường hợp 3: p=3k+2

=>p+10=3k+12(loại)

23 tháng 4 2017

Để p + 11 là số nguyên tố thì p là số chẵn (nếu p là số lẻ thì p + 11 là số chẵn \(\Rightarrow p+11⋮2\) mà chia hết cho một số thì không phải là số nguyên tố)

Trong tập hợp các số nguyên tố chỉ có 2 là số chẵn. Vậy p = 2

23 tháng 4 2017

b) Để p + 8, p + 10 là số nguyên tố thì p là số lẻ (nếu p là số chẵn thì \(p+8⋮2,p+10⋮2\) mà chia hết cho một số thì không phải là số nguyên tố

Nếu p = 3, p + 8 = 3 + 8 = 11 là số NT; p + 10 = 3 + 10 = 13 là số NT (chọn)

Nếu \(p=3k\left(k\in N|k>1\right)\)thì p là hợp số (loại)

Nếu \(p=3k+1\left(k\in N\right)\Rightarrow p+8=3k+1+8=3k+9⋮3\) (loại)

Nếu \(p=3k+2\left(k\in N\right)\Rightarrow p+10=3k+2+10=3k+9⋮3\)

(loại)

Vậy p=3

11 tháng 3 2017

Để \(\dfrac{2n+3}{7}\) là số nguyên thì:

(2n + 3) \(⋮\) 7

\(\Rightarrow\) (2n + 3 - 7) \(⋮\) 7

\(\Rightarrow\) (2n - 4) \(⋮\) 7

\(\Rightarrow\) [2(n - 2)] \(⋮\) 7

Mà (2,7) = 1

\(\Rightarrow\) (n - 2) \(⋮\) 7

\(\Rightarrow\) n - 2 = 7k (k \(\in\) Z)

n = 7k + 2 (k \(\in\) Z)

Vậy với n = 7k + 2 (k \(\in\) Z) thì \(\dfrac{2n+3}{7}\) là số nguyên.

Chúc bn học tốt! vui

Tik mik nha !yeu

11 tháng 3 2017

Cac dap an:

A. 4k + 3

B. 7k + 5

C. 7k

Vs k thuoc Z nhe!

Cac bn giup mk vs, mk dang can gap dap an lan loi giai nhe!

D. 7k +2

21 tháng 3 2017

Để 3n+2/n-1 có giá trị là số nguyên

=>3n+2 chia hết cho n-1

=>(3n+2)-(n-1) chia hết cho n-1

=>(3n+2)-3(n-1) chia hết cho n-1

=>(3n+2)-(3n-1) chia hết cho n-1

=> 3n+2 - 3n -1 chia hết cho n-1

=>1 chia hết cho n-1

=> n=0;2

hok tốt nha

21 tháng 3 2017

=>3n+2chia hết cho n-1

n-1chia hết cho n-1

3n-1chia hết cho n-1

3n+2-3n-1 chia hết cho n-1

(3n-3n)+(2-1) chia hết cho n-1

0+1 chia hết cho n-1

1 chia hết cho n-1

=>n-1 thuộc Ư(1)

mà Ư(1)={-1;+1}

Lập bảng

n-1-1+1
n02
đánh giáthuộc Zthuộc Z

=>n={0;2} để n-1 thỏa mãn điều kiện

12 tháng 11 2017

nếu n lẻ thì các số  n+3; n+5;... là hợp số

n chẵn: n =0 thì n +1 không là số nguyên tố

n= 2 thì n +7 là hợp số

n=4 thì thoả mãn

12 tháng 11 2017

n là số 4

vì 4+1=5 là số nguyên tố

4+3=7 là số nguyên tố

4+7=11 là số nguyên tố

4+9=13 là số nguyên tố

4+13=17 là số nguyên tố

4+15=19 là số nguyên tố.