K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

A. >

B . <

C. > 

D. =

hok tốt

13 tháng 9 2018

a.>

b.<

c.>

d.=

16 tháng 4 2016

phân số là gì vậy bạn

26 tháng 7 2018

a )  Ta có : 

\(\frac{9^{10}-4}{9^{10}-5}=\frac{9^{10}-5+1}{9^{10}-5}=1+\frac{1}{9^{10}-5}\)

\(\frac{9^{10}-2}{9^{10}-3}=\frac{9^{10}-3+1}{9^{10}-3}=1+\frac{1}{9^{10}-3}\)

Do \(\frac{1}{9^{10}-5}>\frac{1}{9^{10}-3}\)

\(\Rightarrow1+\frac{1}{9^{10}-5}>1+\frac{1}{9^{10}-3}\)

\(\Rightarrow\frac{9^{10}-4}{9^{10}-5}>\frac{9^{10}-2}{9^{10}-3}\)

b ) Ta có : 

\(\frac{2.7^{10}-1}{7^{10}}=2-\frac{1}{7^{10}}\)

\(\frac{2.7^{10}+1}{7^{10}+1}=\frac{2.7^{10}+2-1}{7^{10}+1}=\frac{2\left(7^{10}+1\right)-1}{7^{10}+1}=2-\frac{1}{7^{10}+1}\)

Do \(\frac{1}{7^{10}}>\frac{1}{7^{10}+1}\)

\(\Rightarrow2-\frac{1}{7^{10}}< 2-\frac{1}{7^{10}+1}\)

\(\Rightarrow\frac{2.7^{10}-1}{7^{10}}< \frac{2.7^{10}+1}{7^{10}+1}\)

26 tháng 7 2018

mình xem chả hiểu đây này

10 tháng 5 2019

 thấy B/A

 lớn hơn 1 .Vây  B

 lớn hơn A

10 tháng 5 2019

\(A=\frac{10^9+5}{10^9-2}\)                                                                                                                                    
\(=\frac{10^9-2}{10^9-2}+\frac{7}{10^9-2}\)

\(=1+\frac{7}{10^9-2}\)

\(B=\frac{10^9}{10^9-7}\)

\(=\frac{10^9-7}{10^9-7}+\frac{7}{10^9-7}\)

\(=1+\frac{7}{10^9-7}\)

\(7\over10^9-5\)<\(7\over10^9-7\) nên A<B

23 tháng 4 2020

\(A=\frac{10^8+1}{10^9+1}=\frac{1}{10}\left(\frac{10^9+10}{10^9+1}\right)=\frac{1}{10}\left(1+\frac{9}{10^9+1}\right)\)

\(B=\frac{10^9+1}{10^{10}+1}=\frac{1}{10}\left(\frac{10^{10}+10}{10^{10}+1}\right)=\frac{1}{10}\left(1+\frac{9}{10^{10}+1}\right)\)

\(\frac{9}{10^9+1}>\frac{9}{10^{10}+1}\)

\(\Rightarrow A>B\)

23 tháng 4 2020

Đặt \(M=\frac{10^8+1}{10^9+1}\) và \(N=\frac{10^9+1}{10^{10}+1}\)

Có : \(M=\frac{10^8+1}{10^9+1}\)

\(\Rightarrow10M=\frac{10^9+10}{10^9+1}=\frac{10^9+1+9}{10^9+1}=1+\frac{9}{10^9+1}\)

Lại có : \(N=\frac{10^9+1}{10^{10}+1}\)

\(\Rightarrow10N=\frac{10^{10}+10}{10^{10}+1}=\frac{10^{10}+1+9}{10^{10}+1}=1+\frac{9}{10^{10}+1}\)

Vì \(\frac{9}{10^9+1}>\frac{9}{10^{10}+1}\) nên \(1+\frac{9}{10^9+1}>1+\frac{9}{10^{10}+1}\)

\(\Rightarrow10M>10N\Rightarrow M>N\)

Vậy M > N.

16 tháng 3 2017

ta có : \(\frac{10^9+2}{10^9-1}=\frac{10^9}{10^9-3}\)

\(\Leftrightarrow\left(10^9+2\right)\left(10^9-3\right)=\left(10^9-1\right)10^9\)

\(\Leftrightarrow10^{18}-10^9.3+2.10^9-6=10^{18}-10^9\)

\(\Rightarrow10^{18}-10^9.3+2.10^9-6=10^{18}-\left(10^9.3-2.10^9+6\right)\)

                                                        \(=10^{18}-\left(10^9+6\right)\)

vì \(-10^9>-\left(10^9+6\right)\Rightarrow10^{18}-10^9>10^{18}-\left(10^9+6\right)\)

\(\Rightarrow A>B\)

                                                        

16 tháng 3 2017

Ta có: A=\(\frac{10^9+2}{10^9-1}=\frac{10^9-1+3}{10^9-1}=1+\frac{3}{10^9-1}\)

         B=\(\frac{10^9}{10^9-3}=\frac{10^9-3+3}{10^9-3}=1+\frac{3}{10^9-3}\)

Mà \(\frac{3}{10^9-1}< \frac{3}{10^9-3}\Rightarrow1+\frac{3}{10^9-1}< 1+\frac{3}{10^9-3}\Rightarrow A< B\)      

Vậy A<B

1 tháng 3 2019

xét A và B có: số mũ từ 2 đến 9 giống nhau; mẫu đều cộng 1

=> Ta chỉ có thể so sánh phần cơ số

vì 7>3 => 7 mũ n>3 mũ n

=> A lớn hơn B

18 tháng 3 2018

Ta có : 

\(S=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+\frac{6}{5}+\frac{7}{6}+\frac{8}{7}+\frac{9}{8}+\frac{10}{9}+\frac{11}{10}+\frac{12}{11}\)

\(S=\frac{2+1}{2}+\frac{3+1}{3}+\frac{4+1}{4}+...+\frac{11+1}{11}\)

\(S=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{11}\right)\)

\(S=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)\)

\(S=10+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)>10\) 

\(\Rightarrow\)\(S>10\) 

Vậy \(S>10\)

Chúc bạn học tốt ~