Phân tích đa thức thành nhân tử
a, a+3
b, 4x+1
c ,2a+3
*LƯU Ý: GIẢI BÀI NÀY PHẢI ÁP DỤNG CĂN NHÉ Ạ DO E MỚI HỌC ĐC 2 BÀI ĐẦU CỦA CT LỚP 9 THÔI Ạ NÊN MN ĐỪNG GIẢI BẰNG CÁCH E CHƯA HỌC NHA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Ta có: \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)
\(=\left(2x+1\right)\left(3-2x+5\right)\)
\(=\left(2x+1\right)\left(8-2x\right)\)
\(=2\left(4-x\right)\left(2x+1\right)\)
b) Ta có: \(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)
\(=\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-\left(3x-2\right)\left(2x+2\right)\)
\(=\left(3x-2\right)\left(4x-3+x-1-2x-2\right)\)
\(=\left(3x-2\right)\left(3x-6\right)\)
\(=3\left(3x-2\right)\left(x-2\right)\)
Bài 2:
a: Ta có: \(\left(a-b\right)\left(a+2b\right)-\left(b-a\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b\right)+\left(a-b\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b+2a-b-a-3b\right)\)
\(=\left(a-b\right)\left(2a-4b\right)\)
\(=2\left(a-b\right)\left(a-2b\right)\)
f: Ta có: \(x^2-6xy+9y^2+4x-12y\)
\(=\left(x-3y\right)^2+4\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x-3y+4\right)\)
Mình không biết đầu bài của bạn là gì nhưng nếu rút gọn thì bạn làm theo cách này nha
(a2+ab+b2).(a2 - ab + b2) - (a4+b4)
= (a2+b2)2-(ab)2-a4-b4
= a4+2(ab)2+b4-(ab)2-a4-b4
= (ab)2
Nếu bạn có gì khó hiểu với lời giải này thì cứ hỏi mình nha
phân tích ra là:(a2+b2-ab)(a2+b2+ab)=(a2+b2)2 - (ab)2 hằng đẳng thức.
=>bất đẳng thức bằng (a2+b2)2 - (ab)2 -(a4+b4)=a4+b4+2a2b2 - (ab)2-(a4+b4)=a2b2.
đề chứng mình gì rứa?
1) \(x^2-2x-4y^2-4y\)
\(=\left[x^2-\left(2y\right)^2\right]-\left(2x+4y\right)\)
\(=\left(x+2y\right)\left(x-2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
2) \(x^4+2x^3-4x-4\)
\(=\left(x^4-4\right)+\left(2x^3-4x\right)\)
\(=\left(x^2+2\right)\left(x^2-2\right)+2x\left(x^2-2\right)\)
\(=\left(x^2-2\right)\left(x^2+2+2x\right)\)
3) \(x^2\left(1-x^2\right)-4x+4x^2\)
\(=x^2\left(1+x\right)\left(1-x\right)+4x\left(x-1\right)\)
\(=x^2\left(1+x\right)\left(1-x\right)-4x\left(1-x\right)\)
\(=\left(1-x\right)\left[x^2\left(1+x\right)-4x\right]\)
a) \(6x^2-11x+3\)
\(=6x^2-9x-2x+3\)
\(=3x\left(2x-3\right)-\left(2x-3\right)\)
\(=\left(3x-1\right)\left(2x-3\right)\)
b) \(2x^2+3x-27\)
\(=2x^2-6x+9x-27\)
\(=2x\left(x-3\right)+9\left(x-3\right)\)
\(=\left(2x+9\right)\left(x-3\right)\)
Theo cách hiểu của t là thế
. Tỉ lệ thuận: Nếu đại lượng x tăng thì đại lượng y cũng tăng, đại lượng x giảm thì đại lượng y cũng giảm. Công thức: y = k.x (k là hằng số khác 0).
. Tỉ lệ nghịch: Nếu đại lượng x tăng lên thì đại lượng y giảm xuống, đại lượng y tăng lên thì đại lượng x giảm. Công thức: y = \(\frac{a}{x}\) hay a = x.y (a là hằng số khác 0)