\(C=5+\frac{6}{\left|x-1\right|+\left|y+3\right|+8}\)
Tìm giá trị lớn nhất.
Mình đag cần rất gấp. mọi ng giúp mình vớiiiiiiii
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left|x-5\right|+12\ge12\)
\(\Rightarrow\frac{-8}{\left|x-5\right|+12}\ge-\frac{8}{12}=-\frac{2}{3}\)
\(\Rightarrow A=10+\frac{-8}{\left|x-5\right|+12}\ge10-\frac{2}{3}=\frac{28}{3}\)
Dấu ''='' xảy ra khi x = 5
Vậy GTNN của A là 28/3 tại x = 5
GTNN của B là 17,5
x=3/4 ; y = 3/2
nha bạn
Vì ( 4x - 3 )2 ≥ 0 ∀ x ; | 5y + 7,5 | ≥ 0 ∀ y
=> B = ( 4x - 3 )2 + | 5y + 7,5 | + 17,5 ≥ 0 + 0 + 17,5 = 17,5
=> B nhận giá trị nhỏ nhận là 17,5
<=> x = \(\frac{3}{4}\) ; y = -1,5
\(B=\left(4x-3\right)^2+\left|5y+7,5\right|+17,5\ge17,5\)
Dấu ''='' xảy ra khi x = 3/4 ; y = -3/2
Vậy GTNN của B bằng 17,5 tại x = 3/4 ; y = -3/2
Vì ( 4x - 3 )2 ≥ 0 ∀ x ; | 5y + 7,5 | ≥ 0 ∀ y
=> B = ( 4x - 3 )2 + | 5y + 7,5 | + 17,5 ≥ 0 + 0 + 17,5 = 17,5
=> B nhận giá trị nhỏ nhận là 17,5
<=> x = \(\frac{3}{4}\) ; y = -1,5
Vì/x-3,5/_>0 nên 0,5-/x-3,5/_<0,5
=>: A=0,5-/x-3,5/_<0,5
A có giá trị lớn nhất là 3,5 khi/x-3,5/=0=>x=3,5
Vậy A có giá trị lớn nhất bằng 0,5 khi x=3,5
\(A=0,5-|x-3,5|\)
Vì: \(|x-3,5|\ge0\)nên \(0,5-|x-3,5|\le0,5\)
Suy ra: \(A=0,5-|x-3,5|\le0,5\)
A có giá trị lớn nhất là 3,5 khi: \(|x-3,5|=0\Rightarrow x=3,5\)
Vậy A có giá trị lớn nhất bằng \(0,5\)khi \(x=3,5\)
Ta có : \(\left|x-2\right|+\left|y-5\right|+10\ge10\)
\(\Rightarrow\frac{-15}{\left|x-2\right|+\left|y-5\right|+10}\ge-\frac{15}{10}=-\frac{3}{2}\)
\(\Rightarrow B=3-\frac{15}{\left|x-2\right|+\left|y-5\right|+10}\ge3-\frac{3}{2}=\frac{3}{2}\)
Dấu ''='' xảy ra khi x = 2 ; y = 5
Vậy GTNN của B bằng 3/2 tại x = 2 ; y = 5
\(A=\frac{2\left|x+5\right|+11}{\left|x+5\right|+4}=\frac{2\left|x+5\right|+8+3}{\left|x+5\right|+4}=2+\frac{3}{\left|x+5\right|+4}\)
Ta có : \(\left|x+5\right|+4\ge4\Rightarrow\frac{3}{\left|x+5\right|+4}\le\frac{3}{4}\)
\(\Rightarrow A=2+\frac{3}{\left|x+5\right|+4}\le2+\frac{3}{4}=\frac{11}{4}\)
Dấu ''='' xảy ra khi x = -5
Vậy GTLN của A bằng 11/4 tại x = -5
Ta có : \(\left|x+1\right|+\left|y+3\right|+8\ge8\)
\(\Rightarrow\frac{6}{\left|x+1\right|+\left|y+3\right|+8}\le\frac{6}{8}=\frac{3}{4}\)
\(\Rightarrow C=5+\frac{6}{\left|x-1\right|+\left|y+3\right|+8}\le5+\frac{3}{4}=\frac{23}{4}\)
Dấu ''='' xảy ra khi x = 1 ; y = -3
Vậy GTLN của C bằng 23/4 tại x = 1 ; y = -3
Vì | x - 1 |\(\ge\)0 ; | y + 3 |\(\ge\)0\(\forall\)x;y
=> | x - 1 | + | y + 3 | + 8\(\ge\)8
=> \(C=5+\frac{6}{\left|x-1\right|+\left|y+3\right|+8}\le5+\frac{6}{8}=\frac{23}{4}\)
Dấu "=" xảy ra <=> \(\orbr{\begin{cases}\left|x-1\right|=0\\\left|y+3\right|=0\end{cases}}\) <=> \(\orbr{\begin{cases}x=1\\y=-3\end{cases}}\)
Vậy minC = 23/4 <=>\(\orbr{\begin{cases}x=1\\y=-3\end{cases}}\)