K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2017

\(P=\frac{10+4-x}{4-x}=\frac{10}{4-x}+1\) (1)

Tìm GTLN do vậy cần (4-x) >0=> x<4

để 10/(4-x) lớn nhất => (4-x) phải là số dương nhỏ nhất

x thuộc Z=> x=3

GTLN P=10+1=11

24 tháng 3 2020

A=37-|x-8|

Ta có:|x-8| >=0 với mọi x thuộc Z

=> 37-|x-8| =< 37 hay A =< 37

Dấu "=" <=> |x-8|=0 <=> x-8=0 <=> x=8

Vậy MaxA=37 đạt được khi x=8

Ta có:﴾các số như 14‐x/4‐x đc vt dưới dạng p số nha﴿
14‐x/4‐x=10+4‐x/4‐x=10/4‐x+4‐x/4‐x=﴾10/4‐x﴿+1
Để ﴾10/4‐x﴿+1 đạtGTNN=>10/4‐x đạt GTNN =>4‐x đạt GTLN
mà ‐x<_﴾bé hơn hoặc bằng﴿0
=> 4‐x<_4
Vì 4‐x đạt GTLN =>4‐x=4=>x=0
khi đó, thay vào biểu thức, ta có:
14‐0/4‐0=14/4=3,5
Vậy GTNN của P bằng 3,5<=>x=0

17 tháng 8 2017

\(P=\frac{14-x}{4-x}=\frac{10+4-x}{4-x}=\frac{10}{4-x}+1\)

P đạt giá trị nhỏ nhất khi \(\frac{10}{4-x}\) nhỏ nhất <=> 4-x lớn nhất < 0 <=> 4-x=-1 <=> x=5 

27 tháng 8 2016

1) Ta có: P = |x| + 7 > hoặc = 7

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy Min P = 7 khi và chỉ khi x = 0

2) Ta có: Q = 9 - |x| < hoặc = 9

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy Max Q = 9 khi và chỉ khi x = 0

27 tháng 8 2016

a)Ta có:\(\left|x\right|\ge0\Rightarrow P=\left|x\right|+7\)\(\ge7\)

Đẳng thức xảy ra khi: |x| = 0  => x = 0

Vậy giá trị nhỏ nhất của p là 7 khi x = 0

b) Ta có: \(\left|x\right|\ge0\Rightarrow-\left|x\right|\le0\Rightarrow Q=9-\left|x\right|=9+\left(-\left|x\right|\right)\le9\)

Đẳng thức xảy ra khi: -|x| = 0  => x = 0

Vậy giá trị lớn nhất của Q là 9 khi x = 0

2 tháng 1 2019

\(A=5-|x+1|\)

Vì \(|x+1|\ge0\)=> \(A=5-|x+1|\le5\)

Dấu '=' xảy ra khi:

\(|x+1|=0\)=> x + 1 = 0 => x = -1

Vậy Amax = 5 khi x = -1

Chúc em học tốt!!!

2 tháng 1 2019

toan lop may vay

1 tháng 11 2017

GTLN :

\(A=\frac{x+1}{x^2+x+1}=\frac{\left(x^2+x+1\right)-x^2}{x^2+x+1}=1-\frac{x^2}{x^2+x+1}\)

Vì \(\frac{x^2}{x^2+x+1}=\frac{x^2}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\ge0\forall x\) nên \(A=1-\frac{x^2}{x^2+x+1}\le1\forall x\) có GTLN là 1

GTNN : 

\(A=\frac{x+1}{x^2+x+1}=\frac{-\frac{1}{3}x^2-\frac{1}{3}x-\frac{1}{3}+\frac{1}{3}x^2+\frac{4}{3}x+\frac{4}{3}}{x^2+x+1}=\frac{-\frac{1}{3}\left(x^2+x+1\right)+\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}\)

\(=-\frac{1}{3}+\frac{\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}=-\frac{1}{3}+\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\ge-\frac{1}{3}\) có GTNN là \(-\frac{1}{3}\)

16 tháng 12 2015

GTNN là -2009 <=> x = 2; y = 3

C không có GTLN vì x và y càng lớn hoặc càng nhỏ thì -|x - 2| và -|y - 3| càng nhỏ

16 tháng 12 2015

 

Vì  - / x-2/ </0

và - / y -3/ </ 0

=> C = -/ x-2/ - / y -3/ - 2009 </ 0+0-2009 = - 2009

Max C = -2009 khi  x -2 =0 => x =2 và y -3 =0 => y =3