K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 11 2021

Do M là trung điểm BC nên: \(\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)

Tương tự: \(\overrightarrow{BN}=\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}\overrightarrow{BC}\) ; \(\overrightarrow{CP}=\dfrac{1}{2}\overrightarrow{CA}+\dfrac{1}{2}\overrightarrow{CB}\)

Cộng vế:

\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}\overrightarrow{BC}+\dfrac{1}{2}\overrightarrow{CA}+\dfrac{1}{2}\overrightarrow{CB}\)

\(=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{BA}\right)+\dfrac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{CA}\right)+\dfrac{1}{2}\left(\overrightarrow{BC}+\overrightarrow{CB}\right)=\overrightarrow{0}\)

b. Từ câu a ta có:

\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{AO}+\overrightarrow{OM}+\overrightarrow{BO}+\overrightarrow{ON}+\overrightarrow{CO}+\overrightarrow{OP}=\overrightarrow{0}\)

\(\Leftrightarrow-\overrightarrow{OA}+\overrightarrow{OM}-\overrightarrow{OB}+\overrightarrow{ON}-\overrightarrow{OC}+\overrightarrow{OP}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OM}+\overrightarrow{ON}+\overrightarrow{OP}\) (đpcm)

14 tháng 8 2019

     Mình không biết trả lời.Mình mới học lớp 5 thôi .Mong bạn thông cảm nhé!

25 tháng 8 2021

c1 ta có vector AB+vecAC+vecBC=vec0

c2ta co vector OA=-vector OB AOB thẳng hàng nhưng ngược chiều=>vector OA+vectorOB=vectorOA-vector OA=vec0

hojk tốt=>>>>>>>>>>>>>>>>>>>>>>>>>

 

14 tháng 10 2021

\(\overrightarrow{BM}+\overrightarrow{CN}+\overrightarrow{AP}\)

\(=\dfrac{1}{2}\left(\overrightarrow{BC}+\overrightarrow{CA}+\overrightarrow{AP}\right)\)

\(=\overrightarrow{0}\)

7 tháng 4 2018

Chọn A

Gắn hệ trục tọa độ Oxyz như hình vẽ với  

30 tháng 4 2019

2 tháng 8 2018

PM là đường trung bình của \(\Delta ABC\) nên  \(PM=\frac{1}{2}AC\)

Mà PM cũng là ĐTB của \(\Delta OA'C'\) nên \(PM=\frac{1}{2}A'C'\)

Suy ra: \(AC=A'C'\)

Tương tự, ta có: \(PN=\frac{1}{2}BC,PN=\frac{1}{2}B'C'\Rightarrow BC=B'C'\)

                              \(MN=\frac{1}{2}AB,MN=\frac{1}{2}A'B'\Rightarrow AB=A'B'\)

Vậy \(\Delta ABC=\Delta A'B'C'\left(c.c.c\right)\)

Chúc bạn học tốt.