K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2017

\(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2\)(*)

Với \(n=1;n=2\) (*) đúng

Giả sử (*) đúng với n=k khi đó (*) thành

\(1^3+2^3+...+k^3=\left(1+2+...+k\right)^2\)

Thật vậy giả sử (*) đúng với n=k+1 khi đó (*) thành

\(1^3+2^3+...+k^3+\left(k+1\right)^3=\left(1+2+...+k+k+1\right)^2\left(1\right)\)

Cần chứng minh (1) đúng, mặt khác ta lại có

\(\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2=\frac{\left(n^2+n\right)^2}{4}\)

Đẳng thức cần chứng minh tương đương với

\(\frac{\left(k^2+k\right)^2}{4}+\left(k+1\right)^3=\frac{\left(k^2+3k+2\right)^2}{4}\)

\(\Leftrightarrow4k^3+12k^2+12k+4=4\left(k+1\right)^3\)

\(\Leftrightarrow4\left(k+1\right)^3=4\left(k+1\right)^3\)

Theo nguyên lý quy nạp ta có đpcm

Vậy \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2\)

13 tháng 1 2017

Ta có : \(1^3+2^3+3^3+....+n^3\)

=\(\left(1+2+3+4+...+n\right)^2\)

=\(\left(\frac{n\left(n+1\right)}{2}\right)^2\) (đpcm)

6 tháng 3 2021

\(\Rightarrow A=2^{2n}-1=4^n-1=\left(4-1\right)\left(4^{n-1}+4^{n-2}+...+4+1\right)=3\cdot\left(4^{n-1}+4^{n-2}+...+4+1\right)⋮3\forall n\in N\)

12 tháng 10 2016

Ta có: \(\sqrt{a^3+b^3+c^3}=\sqrt{\left(a+b+c\right)^2}=a+b+c\)(với a,b,c dương)

=>với mọi n dương ta cũng viết biểu thức đc dưới dạng:

\(S_n=\left(1+2+3+...+n\right)^2\)

Đặt \(A=1+2+3+....+n\)

Tổng A có số số hạng theo n là:

\(\left(n-1\right):1+1=n\)(số)

Tổng A theo n là:

\(\frac{n\left(n+1\right)}{2}\).Thay A vào ta có:

\(\Rightarrow S_n=\left[\frac{n\left(n+1\right)}{2}\right]^2\)

 

12 tháng 10 2016

Ta có công thức sau:

\(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)

\(\Rightarrow\left(1+2+3+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2\) (*)

\(\Leftrightarrow1^3+2^3+...+n^3=\left(1+2+3+...+n\right)^2\) (1)

Cần chứng minh (1) đúng với mọi n dương

Với \(n=1;n=2\) thì đẳng thức đúng

Giả sử đẳng thức đúng với \(n=k\)

Nghĩa là: \(1^3+2^3+...+k^3=\left(1+2+...+k\right)^2\)

Ta sẽ chứng minh nó đúng với \(n=k+1\)

Viết lại đẳng thức cần chứng minh \(1^3+2^3+...+k^3+\left(k+1\right)^3=\left(1+2+...+k+k+1\right)^2\)(**)

Ta cũng có công thức tương tự (*)

\(\Leftrightarrow\frac{\left(k+k\right)^2}{4}+\left(k+1\right)^3=\frac{\left(k^2+3k+2\right)^2}{4}\)

\(\Leftrightarrow\left(k^2+3k+2\right)^2-\left(k^2+k\right)^2=4\left(k+1\right)^3\)

\(\Leftrightarrow4k^3+12k^2+12k+4=4\left(k+1\right)^3\)

Vậy theo nguyên lý quy nạp ta có đpcm.

11 tháng 10 2017

khó thế

14 tháng 1 2017

Đầu tiên, Tính S1=1+2+3+...+n=\(\frac{n\left(n+1\right)}{2}\)

*/ Tính S2=12+22+32+...+n2

Đặt: S2'=1.2+2.3+3.4+...+n(n+1)

=>3S2'=1.2.3+2.3.3+3.4.3+...+n(n+1).3=1.2.3+2.3.(4-1)+3.4.(5-2)+...+n(n+1)[(n+2)−(n−1)]

Nhân ra và rút gọn ta được: 3S2′=n(n+1)(n+2) => S2'=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

Ta lại có: S2′=1.2+2.3+3.4+...+n(n+1)=(12+22+32+...+n2)+(1+2+3+...+n)=S2+S1=S2+\(\frac{n\left(n+1\right)}{2}\)

=> S2=S2'-\(\frac{n\left(n+1\right)}{2}\)=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\) -\(\frac{n\left(n+1\right)}{2}\)=\(\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

S3=

17 tháng 7 2015

a) A = 12 + 22 + ...+ n2 = 1.(2 - 1) + 2.(3 - 1) + ...+ n.(n+ 1 - 1) = [1.2 + 2.3 + ...+ n.(n+1)] - (1 + 2 + ... + n)

Tính B = 1.2 + 2.3 + ...+ n.(n+1)

=> 3.B = 1.2.3 + 2.3.3 +3.4.3 + ...+ n.(n+1).3

= 1.2.3 + 2.3.(4 -1) + 3.4 .(5 - 2) + ...+ n.(n+1).((n+2) - (n-1) )

= [1.2.3.+ 2.3.4 + 3.4.5 +...+ n.(n+1).(n+2)] - [1.2.3 + 2.3.4 +...+ (n-1).n(n+1)] = n(n+1)(n+2)

=> B = n(n+1).(n+2)/3

Tính 1 + 2 + 3 + ..+ n =(n+1).n / 2

Vậy A =  n(n+1).(n+2)/3 - (n+1).n / 2 = n(n+1).(2n+1) / 6

17 tháng 7 2015

Ta có: \(n^3=n.n.n=n.\left(\frac{n+1+n-1}{2}\right).n\left(\frac{\left(n+1\right)-\left(n-1\right)}{2}\right)\)

\(=\left(\frac{n\left(n+1\right)}{2}+\frac{n\left(n-1\right)}{2}\right).\left(\frac{n\left(n+1\right)}{2}-\frac{n\left(n-1\right)}{2}\right)=\left(\frac{n\left(n+1\right)}{2}\right)^2-\left(\frac{n\left(n-1\right)}{2}\right)^2\)

(Áp dụng công thức a2 - b2 = (a-b).(a+b))

Áp dụng vào ta có: \(1^3=\left(\frac{1.2}{2}\right)^2-\left(\frac{1.0}{2}\right)^2\)

                             \(2^3=\left(\frac{2.3}{2}\right)^2-\left(\frac{2.1}{2}\right)^2\)

                             \(3^3=\left(\frac{3.4}{2}\right)^2-\left(\frac{3.2}{2}\right)^2\)

                            ......................

                            \(n^3=\left(\frac{n\left(n+1\right)}{2}\right)^2-\left(\frac{n\left(n-1\right)}{2}\right)^2\)

Cộng từng vế ta được:

\(1^3+2^3+....+n^3=\left(\frac{n\left(n+1\right)}{2}\right)^2\)