K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2021

1.

Ta có thể đưa ra nhiều bộ ba số thỏa mãn yêu cầu bài toán như sau:

+ Ví dụ 1. Các số 7; 9 và 2.

Ta có 7 không chia hết cho 2 và 9 cũng không chia hết cho 2 nhưng 7 + 9 = 16 lại chia hết cho 2. 

+ Ví dụ 2. Các số 13; 19 và 4. 

Ta có 13 không chia hết cho 4 và 19 cũng không chia hết cho 4 nhưng 13 + 19 = 32 lại chia hết cho 4. 

+ Ví dụ 3. Các số 33; 67 và 10.

Ta có 33 không chia hết cho 10 và 67 cũng không chia hết cho 10 nhưng 33 + 67 = 100 lại chia hết cho 10. 

Tương tự, các em có thể đưa ra các bộ ba số khác nhau thỏa mãn yêu cầu bài toán. 

Qua bài tập 6 này, ta rút ra nhận xét như sau: 

Nếu m chia hết cho p và n chia hết cho p thì tổng m + n chia hết cho p nhưng điều ngược lại chưa chắc đã đúng. 

Nếu tổng m + n chia hết cho p thì chưa chắc m chia hết cho p và n chia hết cho p. 

2.

Vì (a+b)⋮ma+b  ⋮  m nên ta có số tự nhiên k (k≠0)k≠0 thỏa mãn a + b = m.k (1)

Tương tự, vì a⋮ma  ⋮ m nên ta cũng có số tự nhiên h(h≠0)h≠0 thỏa mãn a = m.h 

Thay a = m. h vào (1) ta được: m.h + b = m.k 

Suy ra b = m.k – m.h = m.(k – h)  (tính chất phân phối của phép nhân với phép trừ).

Mà m⋮mm⋮m nên theo tính chất chia hết của một tích ta có   m(k−h)⋮mmk-h  ⋮  m

Vậy b⋮m.b  ⋮  m.  

a)+)Theo bài ta có:a\(⋮\)c;b\(⋮\)c

\(\Rightarrow am⋮c;bn⋮c\)

\(\Rightarrow am\pm bn⋮c\)(ĐPCM)

Vậy nếu a\(⋮\)c;b\(⋮\)c  \(\Rightarrow am\pm bn⋮c\)

b)+)Theo bài ta có:a\(⋮\)m;b\(⋮\)m;a+b+c\(⋮\)m

\(\Rightarrow\left(a+b\right)+c⋮m\)

Mà a+b\(⋮\)m(vì a\(⋮\)m;b\(⋮\)m)

\(\Rightarrow c⋮m\)(ĐPCM)

Vậy c\(⋮m\) khi a\(⋮\)m;b\(⋮\)m và a+b+c\(⋮\)m

*Lưu ý ĐPCM=Điều phải chứng minh

Chúc bn học tốt

2 tháng 4 2020

thanks bạn