K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2021

từ các đỉnh A,B hạ các đường cao AE,BF vuông góc với CD

dễ chứng minh tứ giác ABFE là hình chữ  nhật

=>EF=AB=12cm

do ABCD là hình thang cân \(=>AD=BC,\angle\left(D\right)=\angle\left(C\right)\)

mà \(\angle\left(AED\right)=\angle\left(BFC\right)=90^O\)

\(=>\Delta ADE=\Delta BFC\left(ch-cgn\right)=>DE=FC=\dfrac{1}{2}.\left(DC-EF\right)\)

\(=\dfrac{1}{2}\left(18-12\right)=3cm\)

xét trong tam giác BFC vuông tại F

\(=>\)\(\cos75^o=\dfrac{FC}{BC}=>BC=11,6cm\)

pytago \(=>BF=\sqrt{BC^2-FC^2}=\sqrt{11,6^2-3^2}=11,2cm\)

\(=>S=\dfrac{BF\left(AB+DC\right)}{2}=....\) thay số

5 tháng 8 2021

Kẻ `AH, CK` vuông góc `CD`.

Xét `\DeltaADH` và `\DeltaBCK` có:

`AH =CK` 

`\hatD=\hatC`

`AD=BC` 

`=> \DeltaADH=\DeltaBCK`

`=> DH=CK=x`

Có: `CD=DH+HK+KC = x+12+x=18 => x=3` (cm)

`tanC=(BK)/(CK) <=> tan75^@ = (BK)/3 => BK =6+3\sqrt3 (cm)`

`=> S=1/2 .(AB+CD) .BK = 90+45\sqrt3 ≈ 168 (cm^2)`

NV
23 tháng 7 2021

Kẻ đường cao AH ứng với CD

Do ABCD là hình thang cân

\(\Rightarrow DH=\dfrac{CD-AB}{2}=3\left(cm\right)\)

Trong tam giác vuông ADH ta có:

\(tanD=\dfrac{AH}{DH}\Rightarrow AH=DH.tanD=3.tan75^0=6+3\sqrt{3}\left(cm\right)\)

\(S_{ABCD}=\dfrac{1}{2}AH.\left(AB+CD\right)\approx168\left(cm^2\right)\)

NV
23 tháng 7 2021

undefined

10 tháng 1 2018

a) DDBC vuông  có B C D ^ = 2 B D C ^  nên A D C ^ = B C D ^ = 60 0  và  D A B ^ = C B A ^ = 120 0

b) Tính được DC = 2.BC = 12cm, suy ra PABCD = 30cm.

Hạ đường cao BK, ta có BK = 3 3 c m .

Vậy SABCD =  27 3 c m 2

20 tháng 12 2019

Giả sử hình thang cân ABCD có AB = 12cm, CD = 18cm,góc D = 75 °

Kẻ AH ⊥ CD, BK ⊥ CD

Vì tứ giác ABKH là hình chữ nhật nên: AB = HK = 12 (cm)

Ta có: ∆ ADH =  ∆ BCK (cạnh huyền, góc nhọn)

Suy ra: DH = CK

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9