Đường cao của 1 tam giác vuông chia cạnh huyền thành 2 đoạn thẳng có độ dài là 3cm và 12cm . Hãy vẽ hình và tính các cạnh góc vuông của tam giác này
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Áp dụng đl pytago ta có:
\(\left(y+z\right)^2=3^2+4^2=9+16=25\)
=> y + z = 5
Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:
\(3^2=y\left(y+z\right)=5y\)
=>\(y=\frac{3^2}{5}=1,8\)
Có: y + z =5
=>z=5-y=5-1,8=3,2
Áp dụng hên thức liên quan tới đường cao:
\(x^2=y\cdot z=1,8\cdot3,2=\frac{144}{25}\)
=>\(x=\frac{12}{5}\)
ΔABC vuông tại A và đường cao AH như trên hình.
BC = BH + HC = 1 + 2 = 3
Theo định lí 1:
A B 2 = B H . B C = 1 . 3 = 3
=> AB = √3
Theo định lí 1:
A C 2 = H C . B C = 2 . 3 = 6
=> AC = √6
Vậy độ dài các cạnh góc vuông của tam giác lần lượt là √3 và √6.
ΔABC vuông tại A và đường cao AH như trên hình.
BC = BH + HC = 1 + 2 = 3
Theo định lí 1: AB2 = BH.BC = 1.3 = 3
=> AB = √3
Theo định lí 1: AC2 = HC.BC = 2.3 = 6
=> AC = √6
Vậy độ dài các cạnh góc vuông của tam giác lần lượt là √3 và √6.
Giả sử tam giác ABC có góc BAC = 90o, AH ⊥ BC, BH = 3, CH = 4
Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:
AB2 = BH.BC = 3.(3 + 4) = 3.7 = 21 ⇒ AB = \(\sqrt{21}\)
AC2 = CH.BC = 4.(3 + 4) = 4.7 = 28 ⇒ AC = \(\sqrt{28} = 2\sqrt{7} \)
Áp dụng hệ thức lượng trong tam giác ABC vuông tại A có đường cao AH, ta có:
AH2=BH.CH⇒AH=√BH.CH=√1.2=√2
Áp dụng định lí Pytago vào tam giác ABH vuông tại H, ta có:
AH=√BH2+AH2=√1+2=√3AH=BH2+AH2=1+2=3
Áp dụng định lí Pytago vào tam giác ABC vuông tại A, ta có:
AC=√BC2−AB2=√32−3=√6AC=BC2−AB2=32−3=6
Giả sử tam giác ABC có góc BAC = 90 ° , AH ⊥ BC, BH = 3, CH = 4
Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:
A B 2 = BH.BC = 3.(3 + 4) = 3.7 = 21 ⇒ AB = 21
A C 2 = CH.BC = 4.(3 + 4) = 4.7 = 28 ⇒ AC = 28 = 2 7
B1: Gọi Tam giác ABC vuông tại A có AH là đ/cao chia cạnh huyền thành 2 đoạn HB và HC
AH2=HB x HC =3x4=12
AH=căn 12 r tính mấy cạnh kia đi
B2: Ta có AB/3=AC/4 suy ra AB = 3AC/4
Thế vào cong thức Pytago Tam giác ABC tính máy cái kia
#)Giải :
Áp dụng định lí Py - ta - go :
\(BC^2=AB^2+AC^2\Leftrightarrow BC^2=3^2+4^2=9+16=25\)
\(\Rightarrow BC=\sqrt{25}=5\)
Ta có : \(AB.AC=BC.AH\)
\(\Rightarrow3.4=5.AH\Rightarrow H=\frac{12}{5}\)
\(\hept{\begin{cases}AB^2=BC.BH\Rightarrow BH=\frac{AB^2}{BC}=\frac{3^2}{5}=\frac{9}{5}\\AC^2=BC.CH\Rightarrow CH=\frac{AC^2}{BC}=\frac{4^2}{5}=\frac{16}{5}\end{cases}}\)
Vậy \(\hept{\begin{cases}BC=5\\BH=\frac{9}{15}\\CH=\frac{16}{5}\end{cases}}\)