K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2021

Trên tia đối của PB lấy H sao cho BP = PH

ΔBPC và ΔHPD có:

BP = HP (cách vẽ)

\(\widehat{BPC}=\widehat{HPD}\left(đối.đỉnh\right)\) (đối đỉnh)

PC = PD (gt)

Do đó, ΔBPC=ΔHPD(c.g.c)

=> BC = DH (2 cạnh t/ứng)

\(\widehat{PBC}=\widehat{PHD}\) (2 góc t/ứ), mà 2 góc này ở vị trí so le trong nên BC // HD

ΔABH có: M là trung điểm của AB (gt)

P là trung điểm của BH (vì HP = BP)

Do đó MP là đường trung bình của ΔABH

\(\Rightarrow MP=\dfrac{1}{2}AH\) ; MP // AH 

\(\Rightarrow2MP=AH\)

Có: \(AD+DH\ge AH\) (quan hệ giữa 3 điểm bất kì)

\(\Leftrightarrow AD+BC\ge2MP\) (thay \(DH=BC;AH=2MP\))

\(\Leftrightarrow\dfrac{AD+BC}{2}\ge MP\)

Mà theo đề bài: \(MP=\dfrac{BC+AD}{2}\)

Do đó, \(AD+DH=AH\)

=> A,D,H thẳng hàng

Mà HD // BC (cmt) nên AD // BC

Tương tự: AB // CD

Tứ giác ABCD có: AD // BC (cmt);AB // CD (cmt)

Do đó, ABCD là hình bình hành 

 

Bài 1: 

Xét ΔABD có 

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình

=>MQ//BD và MQ=BD/2(1)

Xét ΔBCD có 

N là trung điểm của BC

P là trung điểm của CD

Do đó: NP là đường trung bình

=>NP//BD và NP=BD/2(2)

Từ (1) và (2) suy ra MQ=NP và MQ//NP

Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình

=>MN=AC/2=BD/2(3)

Từ (1) và (3) suy ra MQ=MN

Xét tứ giác MQPN có

MQ//PN

MQ=PN

Do đó: MQPN là hình bình hành

mà MQ=MN

nên MQPN là hình thoi

Suy ra: MP⊥NQ

5 tháng 9 2017

2 tháng rồi bạn có biết kết quả chưa vậy

8 tháng 9 2017

dùng biểu thức vectơ bạn ơi

4 tháng 12 2017

Ta có MN song song và bằng QP (vì cùng song song với AC và bằng 1/2 của AC theo tính chất đường trung bình của tam giác)

Vậy MNPQ là hình bình hành vì có 2 canh đối song song và bằng nhau. 

mk chi lam dc y a thui

4 tháng 12 2017

mơn nhìu nha