Cho tam giác ABC cân tại A, trên cạnh đáy BC lấy 2 điểm D và E sao cho BD=CE.Chứng minh tam giác ADE cân tại A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình thấy đề nó sai sai
Cho tam giác ABC cân tại A ( ), trên cạnh BC lấy 2 điểm D và E sao cho BD = DE = EC. Kẻ ; , BH cắt CK tại G. a) Chứng minh tam giác ADE cân b) Chứng minh BH = CK c) Gọi M là trung điểm của BC, chứng minh A, M, G thẳng hàng d) Chứng minh AC > AD
kẻ BH với CK như nào cũng được hay BH⊥AC;CK⊥AB hay H là trung điểm của AC,K là trung điểm của AB
ta có
\(\hept{\begin{cases}AB=AC\\\widehat{ABD}=\widehat{ACE}\\\widehat{BAD}=\widehat{CAE}\end{cases}\Rightarrow\Delta ABD=}\Delta ACE\left(c.g.c\right)\Rightarrow EC=EA\)
mà ta có \(\widehat{DAE}=\widehat{BAC}-\widehat{DAB}-\widehat{CAE}=120^0-30^0-30^0=60^0\)
do đó tam giác AEC cân và có một góc bằng 60 độ nên AEC đêu nên AE=EC=CA
mà ta có
\(\widehat{BAD}=\widehat{ABD}=30^0\Rightarrow BD=DA\) tương tự ta chúng minh được \(AE=EC\Rightarrow BD=DC=CE\)
Chứng minh được tam giác ABD = tam giác ACE (c-g-c) => AD = AE
Từ đó tam giác ADE cân tại A.
Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
Do đó: ΔABD=ΔACE
=>AD=AE
Hình vẽ:
Giải:
Vì tam giác \(ABC\) cân tại \(A\):
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\) ( góc bù )
Xét \(\Delta ABD\) và \(\Delta ACE\) có:
\(AB=AC \) \(\left(gt\right)\)
\(\widehat{ABD}=\widehat{ACE}\) \(\left(cmt\right)\)
\(BD=CE \) \(\left(gt\right)\)
Do đó: \(\Delta ABD=\Delta ACE\) \(\left(c.g.c\right)\)
\(\Rightarrow AD=AE\) ( cặp cạnh tương ứng )
\(\Rightarrow\Delta ADE\) cân tại \(A\).
Bài làm
Bạn tự vẽ hình nhé
Vì tam giác ABCABC cân tại A:
⇒ˆABC=ˆACB⇒ABC^=ACB^
⇒ˆABD=ˆACE⇒ABD^=ACE^ ( góc bù )
Xét ΔABDΔABD và ΔACEΔACE có:
AB=ACAB=AC (gt)
ˆABD=ˆACEABD^=ACE^ (cmt)
BD=CEBD=CE (gt)(gt)
Do đó: ΔABD=ΔACEΔABD=ΔACE (c.g.c)(c.g.c)
⇒AD=AE⇒AD=AE ( cặp cạnh tương ứng )
⇒ΔADE⇒ΔADE cân tại A
a) ta có AB=AC. BD=CE => AD=AE => tam giác ADE cân tại A => góc ADE= \(\frac{180-A}{2}\)
tam giác ABC CÂN TẠI A => GÓC B=\(\frac{180-A}{2}\)
=> GÓC D =GÓC B. MÀ 2 GÓC VỊ TRÍ ĐỒNG VỊ => DE//BC
B) TAM GIÁC ABE VÀ TAM GIÁC ACD
AB=AC
GÓC A CHUNG
BE=CD
=> 2 TAM GIÁC = NHAU (C.G.C)
C) tam giác ABE = tam giác ACD => GÓC ABE= GÓC ACD
C/M TAM GIÁC DBC VÀ TAM GIÁC EBC (C.G.C)
=> GÓC BCD=GÓC ECB => TAM GIÁC IBC CÂN => IB=IC
XÉT tam giác BID VÀ tam giác CIE:
GÓC BID=CIE(ĐỐI ĐỈNH)
IB=IC
GÓC DBE=ECD
=> 2 TAM GIÁC = NHAU (G.C.G)
D) XÉT TAM GIÁC IAB VÀ TAM GIÁC IAC
AB=AC
GÓC ABE=ACD
IB=IC
=> 2 TAM GIÁC = NHAU (C.G.C)
=> GÓC BAI=GÓC CAI
=> AI LÀ PHÂN GIÁC GÓC BAC
MÀ TAM GIÁC ABC CÂN => AI ĐỒNG THỜI LÀ ĐƯỜNG CAO => AI VUÔNG GÓC BC
Để chứng minh AI vuông góc với BC bạn hãy kéo dài AI cắt BC tại 1 điểm nào đó(VD:K).Sau dó chứng minh AKB=AKC=90 độ.
a) ta có AB=AC. BD=CE => AD=AE => tam giác ADE cân tại A => góc ADE= \(\frac{180-A}{2}\)
tam giác ABC CÂN TẠI A => GÓC B=\(\frac{180-A}{2}\)
=> GÓC D =GÓC B. MÀ 2 GÓC VỊ TRÍ ĐỒNG VỊ => DE//BC
B) TAM GIÁC ABE VÀ TAM GIÁC ACD
AB=AC
GÓC A CHUNG
BE=CD
=> 2 TAM GIÁC = NHAU (C.G.C)
C) tam giác ABE = tam giác ACD => GÓC ABE= GÓC ACD
C/M TAM GIÁC DBC VÀ TAM GIÁC EBC (C.G.C)
=> GÓC BCD=GÓC ECB => TAM GIÁC IBC CÂN => IB=IC
XÉT tam giác BID VÀ tam giác CIE:
GÓC BID=CIE(ĐỐI ĐỈNH)
IB=IC
GÓC DBE=ECD
=> 2 TAM GIÁC = NHAU (G.C.G)
D) XÉT TAM GIÁC IAB VÀ TAM GIÁC IAC
AB=AC
GÓC ABE=ACD
IB=IC
=> 2 TAM GIÁC = NHAU (C.G.C)
=> GÓC BAI=GÓC CAI
=> AI LÀ PHÂN GIÁC GÓC BAC
e) MÀ TAM GIÁC ABC CÂN => AI ĐỒNG THỜI LÀ ĐƯỜNG CAO => AI VUÔNG GÓC BC
Ta có hình vẽ:
Xét tam giác ABD và tam giác ACE có:
AB = AC (do tam giác ABC cân)
góc ABC = góc ACB (do tam giác ABC cân)
BD = CE (GT)
Vậy tam giác ABD = tam giác ACE (c.g.c)
=> AD = AE (2 cạnh tương ứng)
=> tam giác ADE cân tại A
vậy góc A là góc chung hả bạn