Chứng minh rằng tồn tại 1 số có dạng 2017^k-1:2016
Dấu ":" là dấu chia hết
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo bài này :
cách 1:
xét 3^k.
chọn k từ 1 đến 999 ta được dãy số
3; 3² ; 3³;...; 3^999
999 số trên khi chia cho 1000 sẽ được 999 số dư
(0,1...999)
xét 2 trh:
trh 1: số dư của các số trong dãy đôi một khác nhau
=> tồn tại một số trong dãy chia 1000 dư 1
=> 3^a -1 chia hết 1000
=> đpcm
trh2: số dư của các số trong dãy không khác nhau đôi một
=> sẽ có it nhất 2 số đồng dư
2 số đó là: 3^m và 3ⁿ (1≤m<n≤999)
=> hiệu của 2 số này chia hết cho 1000
=> 3ⁿ - 3^m = h.1000
mà: 3ⁿ - 3^m = 3^m.(3^(n-m) -1)
lại có: 3^m không chia hết cho 1000
=> 3^(n-m) - 1 chia hết cho 1000
mà 1≤m<n≤999 => 0 ≤ n - m ≤ 999
=> đpcm
vậy tồn tại số k thuộc N sao cho 3^k-1 chia hết 1000
.......... .......
cách 2:
xét k= 2n (n chẵn)
A= 3^(2n) -1
A= (10-1)^n -1
khai triển nhị thức ta đc:
A= 10ⁿ - 1Cn.10^(n-1) + 2Cn.10^(n-2) +...+ (n-2)Cn.10^2 - (n-1)Cn.10 +1 -1
A= 1000.[10^(n-2) -.....(n-3)Cn] + 100.n.(n+1)\2 - 10n
lấy n= 100m
=>B= n.(n+1)\2.100 - 10n
=>B= 1000.(50.101m -m)
=> A chia hết 1000 khi k= 200m
a) Xét 2017 số: 2015;20152015;...
Khi chia số hạng của dãy cho 2016 thì sẽ có hai phép chia có cùng số dư.Giả sử 2 số đó là: a= 201520152015..2015(m số 2015) b= 201520152015...2015(n số 2015) (với 1=< n<m=< 2017)
=> Hiệu của a và b chia hết cho 2016 hay:
a-b=20152015...2015000chia hết cho 2016 (đpcm)
Xét các số :2016;20162016;..........;2016;...;2016(2018 số 2016)
Có 2018 số nên chia cho 2017 có ít nhất 2 số đồng dư
Giả sử số đó là 2016..........2016 (m số 2016) và 2016.......2016(n số 2016) (m;n E N m>n)
Suy ra 2016.........2016-2016.......2016 chia hết cho 2017
m số 2016 n số 2016
Suy ra 2016...........2016x1000
m-n số 2016
Mà (1000 n ;2017)=1
Suy ra 2016.......2016 chia hết cho 2017(m-n số 2016) (đpcm)
nếu lấy A=2.3.4...2015.2016.2017, thì A chia hết cho 2,3,...2015,2016,2017
và dãy 2015 só bắt đầu từ A+2 đều là hợp số :
A+2;A+3;...;A+2015;A+2015;A+2017
bởi vì A+2 chia hết cho 2
A+3 chia hết cho 3
.......
A+2016 chia hết 2016
A+2017 chia hết 2017 ( ĐPCM)
tick nhé
tôi chịu