Cho tam giác ABC vuông tại A(AB>AC). M là trung điểm cạnh BC . Trên tia đối của tia MA lấy điểm D sao cho MD=MA. C/m rang a) tam giác MAB= TAM GIÁC MDC b) AB// CD c) AM= 1/2 BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left\{{}\begin{matrix}BM=MC\\AM=MD\\\widehat{AMB}=\widehat{CMD}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta MAB=\Delta MDC\left(c.g.c\right)\\ b,\Delta MAB=\Delta MDC\\ \Rightarrow\widehat{MCD}=\widehat{MBA}\)
Mà 2 góc này ở vị trí so le trong nên \(AB\text{//}CD\)
\(c,\left\{{}\begin{matrix}BM=MC\\AM=MD\\\widehat{AMC}=\widehat{BMD}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta MAC=\Delta MDB\left(c.g.c\right)\\ \Rightarrow AC=BD;\widehat{MCA}=\widehat{MBD}\)
Mà 2 góc này ở vị trí slt nên \(AC\text{//}BD\Rightarrow BD\bot AB\)
\(\left\{{}\begin{matrix}AC=BD\\\widehat{BAC}=\widehat{ABD}=90^0\\AB\text{ chung}\end{matrix}\right.\Rightarrow\Delta ABC=\Delta CDA\left(c.g.c\right)\\ \Rightarrow BC=AD\\ d,MF\bot BD\Rightarrow MF\text{//}AB\\ BC=AD\\ \Rightarrow AM=\dfrac{1}{2}AD=\dfrac{1}{2}BC=BM=MC\\ \Rightarrow\Delta AME\text{ cân tại }E\)
Mà ME là trung tuyến nên cũng là đường cao
Do đó \(ME\bot AC\Rightarrow ME\text{//}AB\)
Mà \(MF\text{//}AB\Rightarrow ME\equiv MF\)
Vậy M,E,F thẳng hàng
a) Xét tam giác MAB và tam giác MDC có:
MA=MD (gt)
MB=MC( M là trung điểm BC)
\(\widehat{AMB}=\widehat{DMC}\)( đối đỉnh)
=> Tam giác MAB = tam giác MDC
b)
Tam giác MAB = tam giác MDC => \(\widehat{BAM}=\widehat{CDM}\)
Mà hai góc này ở vị trí so le trong
=> AB//CD
c) Ta có AB vuông AC
mag CD // AB
=> CD vuông AC
=> góc ACD bằng 90 độ
1 Xét 2 tam giác MAB và tam giác MDC:
Ta thấy:
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
BM=MC (gt)
MA=MD (gt)
Từ các giả thiết trên, suy ra:
\(\Delta MAB=\Delta MDC\left(c-g-c\right)\)
a: Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔMAB=ΔMDC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: BA=DC; AC=DB
Xét ΔBAC và ΔCDB có
BA=CD
AC=DB
BC chung
Do đó: ΔBAC=ΔCDB
c: Xét tứ giác AEDF có
AE//DF
AE=DF
Do đó: AEDF là hình bình hành
Suy ra: AD và FE cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của AD
nên M là trung điểm của FE
hay F,M,E thẳng hàng
Trả lời:
P/s: Mk chỉ làm đc nhiu đây!!!~^-^
a) Xét tg MAB và tg MDC có:
AM = DM (gt)
MB = MC (suy từ gt)
gAMB = gDMC (đđ)
=> tgMAB = tgMDC (c.g.c)
b) Đề nghị sửa thành: AB = CD và AB // CD.
Vì tgMAB = tgMDC (câu a)
=> AB = CD (2 cạnh tt/ư)
và ABMˆABM^ = DCMˆDCM^( 2 góc t/ư)
mà 2 góc này ở vị trí so l trong nên AB // CD.
c) Nối B với D.
Xét tgAMC và tgDMB có:
AM = DM (gt)
gAMC = gDMB (đđ)
CM = BM (suy từ gt)
=> tgAMC = tgDMB (c.g.c)
=> AC = DB (2 canjht /ư)
Xét tgBAC và tgCDB có:
BA = CD (câu b)
BC chung
AC = DB (c/m trên)
=> tgBAC = tgCDB (c.c.c)
`~Học tốt!~
Bn tự vẽ hình nha!!!
a) Xét \(\Delta ABM\) và \(\Delta DCM\) có:
MB = MC (M là trung điểm BC (gt))
\(\widehat{AMB} = \widehat{DMC}\)(đối đỉnh)
MA = MD (gt)
\(\Rightarrow\)\(\Delta ABM = \Delta DCM (cgc)\)
b) Vì \(\Delta ABM = \Delta DCM (cmt)\)
\(\Rightarrow\)\(\widehat{BAM} = \widehat{CDM}\) (2 góc tương ứng)
mà 2 góc này nằm ở vị trí so le trong
\(\Rightarrow\) AB // CD
c) Vì \(\Delta ABM = \Delta DCM (cmt)\)
\(\Rightarrow\) AB = DC (2 cạnh tương ứng)Vì AB // CD (cmt)\(AB \perp AC \)\(\Rightarrow\) \(CD \perp AC\) (Định lí 2 bài từ vuông góc đến song song)Xét \(\Delta ABC\) và \(\Delta CDA\) có:\(\widehat{BAC} = \widehat{DCA} = 90^0 \)AB = CD (cmt)AC chung\(\Rightarrow\)\(\Delta ABC = \Delta CDA\) (2 cạnh góc vuông)\(\Rightarrow\) AD = BC (2 cạnh tương ứng)mà \(AM=\frac{1}{2}AD\)\(\Rightarrow AM=\frac{1}{2}BC\)cảm ơn bạn nhìu nhìu lắm