K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2019

Đáp án B

Ta có y ' = 4 x 3 - 4 m x = 4 x ( x 2 - m )  để tồn tại ba điểm cực trị thì m>0 khi đó tọa độ ba điểm cực trị là A ( 0 ; m 4 + 2 m ) , B ( m ; m 4 - m 2 + 2 m ) , C ( - m ; m 4 - m 2 + 2 m )  

⇒ A B = A C = m 4 + m  , B C = 2 m  gọi M là trung điểm B C ⇒ M B = m ⇒ A M = A B 2 - M B 2 = m 4 + m - m = m 2 ⇒ S A B C = 1 2 A M . B C = 1 2 m 2 . 2 m = m 2 . m  

Mặt khác r = S P = m 2 m m 4 + m + m = m 2 m 3 + 1 + 1 = m 3 + 1 - 1 m R = A B . A C . B C 4 S = ( m 4 + m ) 2 m 4 m 2 m = 1 2 m 3 + 1 m   theo giả thiết R = 2 r ⇒ 1 2 ( m 3 + 1 ) m = 2 ( m 3 + 1 - 1 ) m ⇔ ( m 3 + 1 ) = 4 m 3 + 1 - 4 ⇔ ( m 3 + 1 - 2 ) 2 = 0 ⇔ m 3 + 1 = 2 ⇔ m 3 = 3 ⇔ m = 3 3  

26 tháng 3 2016

\(y=4x^3-4mx=4x\left(x^2-m\right)=0\Leftrightarrow\begin{cases}x=0\\x^2=m\end{cases}\)

Hàm số đã cho có 3 điểm cực trị <=> phương trình y=0 có 3 nghiệm phân biệt và y đổi dấu khi x đi qua các nghiệm đó <=>m>0

- Khi đó 3 điểm cực trị của đồ thị hàm số là :

\(A\left(0;m-1\right);B\left(-\sqrt{m};-m^2=m-1\right);\left(\sqrt{m};-m^2=m-1\right)\)

\(S_{ABC}=\frac{1}{2}\left|y_B-y_A\right|.\left|x_C-x_B\right|=m^2\sqrt{m}\)\(AB=AC=\sqrt{m^4+m},BC=2\sqrt{m}\)

\(R=\frac{AB.AC.BC}{4S_{ABC}}=1\Leftrightarrow\frac{\left(m^4+m\right)2\sqrt{m}}{4m^2\sqrt{m}}=1\)\(\Leftrightarrow m^3-2m+1=0\)

                                                                \(\Leftrightarrow\begin{cases}m=1\\m=\frac{\sqrt{5}-1}{2}\end{cases}\)

28 tháng 2 2019

Chọn C.

7 tháng 2 2017

TXĐ: .

Ta có  

Để hàm số có 3 điểm cực trị thì phương trình y'=0 có 3 nghiệm phân biệt  

Khi đó ta có:

y' = 0

.

Ta có:  

Gọi R là bán kính đường tròn ngoại tiếp tam giác ABC, khi đó ta có:

Khi đó tổng các phần tử của S là

 

Chọn C

22 tháng 1 2017

27 tháng 2 2018

Đáp án B.

Xét hàm số  y = x 4 - 2 m x 2 + m - 1 , có y ' = 4 x 3 - 4 m x = 0 ⇔ [ x = 0 x 2 = m .  

Để hàm số có 3 điểm cực trị khi và chỉ khi m > 0. 

Khi đó, gọi A(0;m - 1), B( m ; - m 2 + m - 1 ) và C ( - m ; - m 2 + m - 1 )  là 3 điểm cực trị của ĐTHS.

Gọi H là trung điểm của BC suy ra  H 0 ; - m 2 + m - 1 ⇒ A H = m 2 .  

Diện tích tam giác ABC là  S ∆ A B C = 1 2 . A H . B C = 1 2 m 2 . 2 m = m 2 m .  

Và A B = A C = m 4 + m  suy ra S ∆ A B C = A B . A C . B C 4 R ∆ A B C ⇒ A B 2 . B C = 4 S ∆ A B C  

⇔ m 4 + m . 2 m = 4 m 2 m ⇔ m 4 - 2 m 2 + m = 0 ⇔ m m 3 - 2 m + 1 = 0 .  

Kết hợp với m > 0 suy ra có 2 giá trị m cần tìm.

8 tháng 10 2017

Đáp án B

Điều kiện để hàm số có 3 cực trị 

Ta có y'=4x3-4(m-1)x; y'=0 4x[x2-(m-1)]=0

Điều kiện để hàm số có 3 cực trị thì pt (1) phải có hai nghiệm phân biệt khác 0 tức là

 m-1>0

Áp dụng công thức:


Kết hợp điều kiện ta có

 

.

6 tháng 7 2017

Đáp án B.

Có y ' = − 4 x 3 + 4 m x .   y ' = 0   ⇔ x = 0 x = m c = − m   (Có 3 cực trị nên m > 0 ).

3 điểm cực trị là A 0 ; − 1 ; B m ; m 2 − 1 ; C − m ; m 2 − 1 .  O là tâm đường tròn ngoại tiếp

⇔ O A = O B = O C ⇔ 1 = m + m 2 − 1 2 ⇔ m 4 − 2 m 2 + m = 0 ⇔ m m − 1 m 2 + m − 1 = 0 ⇔ m = 1 m = − 1 + 5 2  (Ta chỉ lấy m > 0 .)

24 tháng 7 2018

Chọn B

Ta có :

Hàm số đã cho có ba điểm cực trị khi m > 0(*)

Khi đó ba điểm cực trị của đồ thị hàm số là

A ( 0 ; m - 1 ) ,   B ( - m ; - m 2 + m - 1 )

S ∆ A B C = 1 2 y B - y A x c - x B

Kết hợp điều kiện (*) ta có

[Phương pháp trắc nghiệm]

Áp dụng công thức

Kết hợp điều kiện (*) ta có